
Abstract The seasonal cycle is the dominant mode of variability in the air-sea CO2 flux in most regions 
of the global ocean, yet discrepancies between different seasonality estimates are rather large. As part of the 
Regional Carbon Cycle Assessment and Processes Phase 2 project (RECCAP2), we synthesize surface ocean 
pCO2 and air-sea CO2 flux seasonality from models and observation-based estimates, focusing on both a 
present-day climatology and decadal changes between the 1980s and 2010s. Four main findings emerge: First, 
global ocean biogeochemistry models (GOBMs) and observation-based estimates (pCO2 products) of surface 
pCO2 seasonality disagree in amplitude and phase, primarily due to discrepancies in the seasonal variability 
in surface DIC. Second, the seasonal cycle in pCO2 has increased in amplitude over the last three decades in 
both pCO2 products and GOBMs. Third, decadal increases in pCO2 seasonal cycle amplitudes in subtropical 
biomes for both pCO2 products and GOBMs are driven by increasing DIC concentrations stemming from 
the uptake of anthropogenic CO2 (Cant). In subpolar and Southern Ocean biomes, however, the seasonality 
change for GOBMs is dominated by Cant invasion, whereas for pCO2 products an indeterminate combination 
of Cant invasion and climate change modulates the changes. Fourth, biome-aggregated decadal changes in the 
amplitude of pCO2 seasonal variability are largely detectable against both mapping uncertainty (reducible) and 
natural variability uncertainty (irreducible), but not at the gridpoint scale over much of the northern subpolar 
oceans and over the Southern Ocean, underscoring the importance of sustained high-quality seasonally resolved 
measurements over these regions.

Plain Language Summary Changes in the seasonal cycle amplitude of surface ocean carbon 
dioxide partial pressure (pCO2) are described over the historical period spanning 1985–2018, using both 
observation-based and model-based estimates. We identify increasing pCO2 seasonality over most regions due 
to increases in anthropogenic carbon in the surface ocean. Observation-based products indicate that there have 
been important high-latitude changes in pCO2 seasonality due to perturbations to the climate system. We also 
find important discrepancies between observation-based and modeled pCO2 seasonality over much of the globe 
that are likely associated with systematic biases in model representations of the surface dissolved inorganic 
carbon (DIC) seasonal cycle and the ratio of total alkalinity to DIC. Both reducible and irreducible forms of 
uncertainty associated with monitoring pCO2 seasonality changes are quantified, highlighting the need for 
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Key Points:
•  pCO2 seasonal cycle amplitude 

changes over 1985–2018 are 
detectable against both mapping 
uncertainty and natural variability 
uncertainty

•  The dominant driver of pCO2 
amplitude increases over decadal 
timescales is attributed to the direct 
effect of Cant invasion

•  A discrepancy is found with surface 
dissolved inorganic carbon (DIC) 
seasonality being systematically less 
in global ocean biogeochemistry 
models than in surface DIC 
observation-based products
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1. Introduction
How is the ocean carbon cycle changing as a consequence of sustained increases in emissions of carbon to the 
atmosphere? Important steps toward answering this question over the last several decades have been provided 
via estimates of ocean carbon uptake from both interior hydrographic measurements (Gruber et al., 2019; Müller 
et al., 2023; Sabine et al., 2004), surface fluxes inferred from measurements of the sea surface partial pressure 
of CO2 (pCO2) (Chau et al., 2022, 2023; Gregor et al., 2019; Landschützer et al., 2014; Rödenbeck et al., 2015), 
global ocean biogeochemistry model simulations (Friedlingstein et al., 2022a, 2022b; Hauck et al., 2020; Orr 
et al., 2001) and ocean inverse models (Gloor et al., 2003; Gruber et al., 2009). A first global synthesis was 
performed roughly a decade ago through the REgional Carbon Cycle Assessment and Processes (RECCAP) 
project (https://www.globalcarbonproject.org/reccap), highlighting inevitable forced carbon cycle changes, while 
also identifying sources of uncertainty.

In a parallel direction of inquiry, it has also become clear that the seasonal cycle in surface ocean pCO2 (and 
thereby air-sea CO2 flux) has been changing, with this first identified in modeling studies (Gallego et al., 2018; 
Gorgues et  al.,  2010; Hauck & Völker,  2015; Joos et  al.,  2023; Lerner et  al.,  2021; Riebesell et  al.,  2009; 
Rodgers et al., 2008; Rustogi et al., 2023) and subsequently inferred from observational constraints (Fassbender 
et al., 2018; Landschützer et al., 2018) and more recently also identified from changes in the seasonal cycle of 
atmospheric CO2 induced by air-sea CO2 fluxes in the Southern Ocean (Yun et al., 2022). Studies to date show 
that the dominant drivers of this trend toward increasing pCO2 seasonal amplitude are the increasing surface 
concentrations of dissolved inorganic carbon (DIC), due to the invasion of anthropogenic CO2 into the ocean, 
and the associated decline in surface ocean buffering capacity. The trend toward increased seasonal amplitude is 
also expected to be modulated by natural variability and by warming (Schlunegger et al., 2019). The net effect 
of warming in high emission projections by the end of the 21st century is to enhance increases in the seasonal 
amplitude of CO2 fluxes over the expansive subtropical domain by approximately 15% (Rodgers et al., 2020).

Our synthesis effort builds on the earlier studies of Fassbender et al.  (2018), Landschützer et al.  (2018), and 
Fassbender et al. (2022), but here we rely on a greatly expanded set of pCO2 products and GOBMs, spanning the 
time period 1985 to 2018, to assess the drivers of multi-decadal changes in the seasonal cycle of surface pCO2. 
Such changes are of interest for three primary reasons. First, they may impact stressors of marine ecosystems, as 
emphasized in the analysis of future changes in pH, hydrogen ion concentration, and calcium carbonate mineral 
saturation state seasonality by Kwiatkowski and Orr (2018). Second, they can have potential impacts for climate 
feedback mechanisms, as demonstrated by Fassbender et al. (2022) for 21st century climate change under both 
strong and moderate CO2 emissions pathways. Third, they will have implications for optimizing the design of 
the global marine carbon observing system, as summer-biased measurements can lead to significant errors for a 
system where the seasonal cycle itself is not stationary.

For the majority of the global ocean, the seasonal cycle in sea surface pCO2 exhibits strong variability that is 
up to two orders of magnitude larger than the seasonal cycle in atmospheric pCO2 (e.g., Takahashi et al., 2002). 
Seasonal variations in pCO2 reflect the interplay of four principal underlying drivers: sea surface temperature 
(SST), sea surface salinity (SSS), dissolved inorganic carbon concentrations (DIC), and total alkalinity (TA) 
(Takahashi et  al.,  1993,  2002). Variations in these drivers are the result of changes in ocean circulation and 
mixing, biological processes, as well as exchanges of heat, freshwater, and carbon with the atmosphere. While the 
temperature-driven or thermal component of observed pCO2 seasonality is well constrained by laboratory studies 
and by high-quality satellite-derived SST products, this is not the case for the other drivers. Therefore, obser-
vational studies often refer to changes related to DIC, TA, or salinity collectively as changes in the nonthermal 
component (Takahashi et al., 1993, 2002). Importantly, thermal and nonthermal drivers of pCO2 seasonality are 
typically found to be opposed in phase and large in amplitude relative to the resulting net pCO2 variations. For this 
reason, skillful modeling of seasonal pCO2 cycling can be compromised if any of the underlying processes are not 
well-represented, both for the amplitude and the phase/timing of seasonality changes. Therefore, state-of-the-art 
models still face challenges in skillfully simulating the seasonal cycle of pCO2 in regions that are known to be 

sustained, seasonally unbiased measurements over the high latitudes as part of an optimized marine carbon 
observing system.

https://www.gobalcarboproject.org/reccap
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important for CO2 exchange with the atmosphere (Anav et al., 2013; Goris et al., 2018; Kessler and Tjiputra, 2016; 
Mongwe et al., 2018; Pilcher et al., 2015). For the important case of the North Atlantic, it has been shown that 
future carbon uptake in ESM projections can be constrained by diagnosing the timing and magnitude of modeled 
seasonal variations in pCO2 (Goris et al., 2018). Similarly, Nevison et al. (2016) demonstrated, for the Southern 
Ocean, that the way an ESM represents the seasonal carbon cycle is related to the model's projected carbon 
uptake. A much weaker seasonal cycle than in higher latitudes is observed in the tropics, where seasonal pCO2 
amplitudes are obscured by interannual variability. In polar latitudes where there is seasonal ice cover, the chal-
lenge of data sparsity associated with the difficulty of sampling pCO2 through the seasonal cycle presents chal-
lenges and uncertainty that are beyond the scope of this study.

An important source of uncertainty with detecting anthropogenic trends in the carbon cycle is natural variability. As 
a matter of definition, we consider the forced anthropogenic signal to represent the total sum of the effects of anthro-
pogenic forcing on atmospheric radiation (greenhouse gases, anthropogenic aerosols, etc.) and thereby warming 
and the ensuing physical and biogeochemical state changes in the ocean, as well as the effect of the invasion flux of 
anthropogenic carbon into the ocean. For the analysis presented here, even if pCO2 products were able to perfectly 
resolve multi-decadal changes in the seasonal amplitude of sea surface pCO2 over 1985 to 2018, it would not be 
possible to confidently isolate the anthropogenic trend from the impacts of natural variability. Given that natural vari-
ability is an intrinsic property of the Earth system, natural variability uncertainty is understood to be an irreducible 
form of uncertainty that can nevertheless be quantified. To address the degree to which natural variability obscures 
detection of anthropogenic trends, we include analyses of large ensemble (LE) simulations with Earth system models 
(ESMs) in this study. LE simulations were considered previously in the study of Schlunegger et al. (2019) for the case 
of 21st century climate change projections under strong emissions, and they showed that over the subtropics forced 
changes in ΔpCO2 seasonal amplitude are more emergent than forced trends in annual mean ΔpCO2.

Previous research has pointed toward significant model biases in representing the seasonal cycle of pCO2 and its 
underlying drivers (Goris et al., 2018; Mongwe et al., 2018; Rodgers et al., 2014). The question naturally arises as 
to whether models have improved since the evaluation of seasonal variability in an early generation of prognostic 
biogeochemistry models (McKinley et al., 2006; Tjiputra et al., 2012). For the case of the North Pacific, the forward 
models in McKinley et al. (2006) had their seasonal cycles in pCO2 evaluated directly against time series measure-
ments from observing stations spanning the subpolar and subtropical gyres to identify non-trivial biases in models. 
Our study differs in that, rather than direct comparisons with time series stations, our observation-based data sources 
consist of mapped global sea surface pCO2 products constructed from the same underlying ungridded SOCAT 
(Surface Ocean CO2 Atlas; Pfeil et al., 2013) data, as well as ocean interior seasonal climatological fields of DIC.

More extensive analyses for the regions with seasonal ice cover, which are not considered here due to their 
sparsity of carbon observations for estimating the seasonal cycle, are provided by the Arctic Ocean (Yasunaka 
et al., 2023) and Southern Ocean (Hauck et al., 2023) regional contributions to RECCAP2. Our analysis and 
synthesis is developed using a diverse set of resources: nine observationally based pCO2 products, three of which 
include associated time-varying monthly surface DIC and TA fields; two independent three-dimensional season-
ally resolved DIC climatologies; hindcast simulations from eleven GOBMs; five large ensemble simulations; and 
individual realizations of 11 CMIP6 models.

This paper is structured as follows. We begin in the methods section by introducing the RECCAP2 pCO2 products and 
GOBMs, along with ancillary products and Earth system model simulations used for this study. In the main results 
section, we present a descriptive account of changes in pCO2 seasonality as well as discrepancies between pCO2 
products and GOBMs, followed by attribution of these changes and discrepancies to their drivers. We finally pres-
ent an analysis focused on identifying detectability of forced/anthropogenic signals, as well as an assessment of the 
robustness of our chosen biome aggregation for detectability of the forced changes in seasonality to changes due to 
natural variability. Our objective is to present a synthesis of the carbon cycle community's current knowledge of how 
the seasonal cycle of sea surface pCO2 and the air-sea CO2 exchange has been changing over the last three decades.

2. Methods
2.1. Considered Regions

Ocean biomes offer a number of advantages as aggregation regions for studying the global carbon cycle (Fay & 
McKinley, 2014). For our interests in seasonality, biomes appropriately reflect the structures that are determined 
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by real-world interactions between ocean circulation and biogeochemistry. For all of the oceanic studies within 
RECCAP2, a discrete number of ocean biomes based on Fay and McKinley (2014) are used to facilitate consistent 
intercomparison between regions (described in the supplement to the Müller (2023) publication of the RECCAP2 
data). This study analyzes pCO2 and CO2 flux seasonality for six biomes (Table 1 and central panel of Figure 1) 
aggregated from the aforementioned. Our decision to aggregate some biomes and exclude others is based on the 
following: First, this is a synthesis study and the seasonal cycle in surface ocean pCO2 exhibits important simi-
larities across the subtropics of each hemisphere. Second, we have elected to not include either the Arctic, the 
Bering Sea, or the regions of the Southern Ocean that are impacted by ice cover, with the analysis of those regions 

Names Aggregated seasonality biomes RECCAP2 biomes

North Atlantic subpolar seasonally stratified NA-SPSS NA-SPSS

North Pacific subpolar seasonally stratified NP-SPSS NP-SPSS

Northern Hemisphere subtropical seasonally stratified NH-STSS NA-STSS + NP-STSS

Northern Hemisphere subtropical permanently stratified NH-STPS NA-STPS + NP-STPS

Southern Hemisphere subtropical permanently stratified SH-STPS SA-STPS + SP-STPS + Southern Indian Ocean

Southern Hemisphere seasonally stratified (subpolar and subtropical combined) SH-SS SO-STSS + SO-SPSS

Note. The full names are given in the left column, the abbreviated names used throughout this study in the central column, and the original RECCAP2 biomes from 
which they are constructed are listed in the right column. Our six aggregated biomes are shown in the central panel of Figure 1. As has been noted in the Methods 
section, spatial and temporal data coverage of data products and models might further constrain the area of the aggregated biomes used for our analysis.

Table 1 
The Six Aggregated Biomes Used in This Study

Figure 1. Central panel showing biomes used for this study (see Table 1 for details): North Atlantic subpolar seasonally stratified (NA-SPSS), North Pacific subpolar 
seasonally stratified (NP-SPSS), Northern Hemisphere subtropical seasonally stratified (NH-STSS), Northern Hemisphere subtropical permanently stratified 
(NH-STPS), Southern Hemisphere subtropical permanently stratified (SH-STPS), and Southern Hemisphere seasonally stratified, incorporating the subpolar and 
subtropical components (SH-SS). Surrounding panels show time series plots of biome-integrated sea-air CO2 fluxes (annual maximum and minimum values irrespective 
of the month of occurrence). pCO2 products (blue) and GOBMs (green) are shown for both the ensemble mean (bold) and for one standard deviation (shaded). Positive 
(negative) values indicate outgassing (ingassing) of CO2. The regions in white in the central panel are not included in this analysis, in each panel, winter is designated 
by W, and summer by S, in order to distinguish the seasonal phasing between the subtropical and subpolar/Southern Ocean biomes.



Global Biogeochemical Cycles

RODGERS ET AL.

10.1029/2023GB007798

5 of 34

left to the individual regional RECCAP2 studies, as mentioned in the Introduction. Third, we have chosen to not 
include the equatorial regions, given that the seasonal cycle there is relatively weak and often obscured by large 
interannual variability.

Thus, our six aggregated biomes (Table 1 and Figure 1) (their precise boundaries given in Supporting Informa-
tion S1 of the RECCAP2 data release of Müller, 2023) consist of North Atlantic subpolar seasonally stratified 
(NA-SPSS), North Pacific subpolar seasonally stratified (NP-SPSS), Northern Hemisphere subtropical season-
ally stratified (NH-STSS), Northern Hemisphere subtropical permanently stratified (NH-STPS), Southern Hemi-
sphere subtropical permanently stratified (SH-STPS), and Southern Hemisphere seasonally stratified (subpolar 
and subtropical combined, SH-SS). We have elected to keep the North Atlantic and North Pacific subpolar 
biomes separate in our analysis in light of important differences that arise in their seasonal cycles.

Besides the aggregation as designated in Table 1, adjustments have been taken to avoid confounding changes in 
observational coverage with seasonality or changes in seasonality. We limit our analysis to regions that have valid 
observation-based (and GOBM) fields for the whole time period 1985–2018 for all pCO2 products and for all 
variables considered in this study (CO2 fluxes, pCO2, SST, SSS, surface DIC, and surface TA). Thereby we make 
sure that the same region is considered for all variables over the whole seasonal cycle but also over the whole 
observational period (see Figure 1).

2.2. Temporal Filtering of RECCAP2 Products

In general, the monthly mean pCO2 products and GOBMs considered here can be expected to represent pCO2 
seasonality modulations that are sustained through the combined effects of the invasion flux of Cant, natural 
variability, and warming. In order to identify the amplitude of the seasonal cycle (with its modulations), we 
follow Landschützer et al. (2018) in using a quadratic polynomial fit to remove the decadal trend from monthly 
time series over 1985–2018. Our analysis through the majority of this manuscript characterizes multi-decadal 
changes in pCO2 seasonal variations by considering differences between the 5-year intervals 1985–1989 and 
2014–2018. We also investigated the degree to which the main results are sensitive to the choice of 5-year versus 
10-year versus 15-year intervals for describing climatologies (Figure S3 in Supporting Information S1), and upon 
finding that the results are relatively insensitive to the approach we opted to use the difference between the two 
5-year intervals 1985–1989 and 2014–2018. As such, our approach is consistent with that used by Landschützer 
et al. (2018), who also used 5-year climatologies in calculating decadal changes.

2.3. Surface Observation-Based Products of pCO2, DIC, and TA

Observation-based pCO2 products that are compared for their representation of pCO2 seasonality are listed in 
Table 2. All of these products are built on surface ocean pCO2 measurements within the Surface Ocean CO2 Atlas 

Product name References Duration and remarks

CSIRML6 Gregor et al. (2019) 1985–2018

CMEMS-LSCE-FFNN Chau et al. (2022, 2023) 1985–2018; DIC and TA available

JMAMLR Iida et al. (2021) 1985–2019; DIC and TA available

Jena-MLS Rödenbeck et al. (2013, 2022) 1985–2018

NIES-ML3 Zeng et al. (2022) 1980–2020

OceanSODA-ETHZ Gregor and Gruber (2021) 1985–2018; DIC and TA available

SOMFFN Landschützer et al. (2016) 1982–2019

UOEX_WAT20 Watson et al. (2020) 1985–2019

spco2_LDEO_HPD Gloege et al. (2022) 1985–2018

Note. The products are described more completely in the individal papers referenced in the table. Note that the 
CMEMS-LSCE-FFNN, JMAMLR, and OceanSODA-ETHZ products include associated surface DIC and TA fields that are 
used in this study.

Table 2 
pCO2 Data Products Used for This Study
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database (SOCAT, Bakker et al., 2016) yet they differ significantly in the way they spatiotemporally interpolate or 
map the sparse observations. Methodologically they include multiple linear regression (Iida et al., 2021), gradient 
boosted decision trees (Gloege et al., 2022), neural networks (Chau et al., 2022; Landschützer et al., 2016; Zeng 
et al., 2022), ensembles of various machine learning approaches (Gregor et al., 2019; Gregor & Gruber, 2021), 
and a Bayesian approach that is additionally constrained by mixed-layer dynamics (Rödenbeck et al., 2013, 2022). 
Additionally, one neural network product applies adjustments to the SOCAT data to account for temperature 
gradients between the ocean surface and the depth of the seawater intake on the observing ships and for the cold 
skin layer effect (Watson et al., 2020).

Of central importance to our study is that three of these products (JMAMLR, OceanSODA-ETHZ, and 
CMEMS-LSCE-FFNN) additionally provide time-varying surface DIC and TA products spanning 1985–2018. 
While we use all available pCO2 products listed in Table 2 for our analysis of seasonal cycles of CO2-fluxes and 
pCO2, our analysis greatly benefits from using these three products to attribute changes of pCO2 seasonality to its 
drivers. We will refer to them as the pCO2/TA products. We provide a summary of how DIC and TA are derived 
for these three pCO2 products in Supporting Information S1, but we refer the reader to the papers cited in Table 2 
for a more complete description of methods for the individual observation-based products.

2.4. Three-Dimensional DIC Climatologies

For our evaluation of seasonal variability in surface DIC concentrations, we consider two three-dimensional DIC 
climatologies constructed from observational products: the Mapped Observation-Based Oceanic DIC (MOBO-
DIC) product by Keppler et al. (2020a, 2020b), and the NNGv2LDEO monthly climatology of interior DIC by 
Broullón et al. (2020). Unlike the pCO2/TA products, these products are based on direct observations of DIC and 
as such provide an independent estimate of surface DIC seasonality, with the caveat that they offer a climatolog-
ical view only. Both of these three-dimensional DIC climatologies are described in greater detail in Supporting 
Information S1.

2.5. Global Ocean Biogeochemistry Models (GOBMs)

Global ocean biogeochemistry models (GOBMs) are compared against the pCO2 products for modulations of 
CO2 fluxes and pCO2 for the six aggregated biomes over the period 1985–2018. Many of the GOBMs consid-
ered here have contributed to the Global Carbon Project's estimate of the ocean carbon sink (Friedlingstein 
et al., 2022a, 2022b), and have been evaluated by Hauck et al. (2020). Both the phase and amplitude of seasonal 
variability in the GOBMs will be evaluated against the pCO2 products, as will the behavior of the drivers (SST, 
DIC, SSS, and TA). The GOBMs are listed in Table  3, and their forcing fields are heterogenous, including 
JRA-55 (Kobayashi et al., 2015), CORE (Large & Yeager, 2009), and forcing derived from the NCEP/NCAR 
reanalysis (Kalnay et al., 1996; Kistler et al., 2001). All but one of the GOBMs listed in Table 3 provide the full 
suite of variables and timescales needed for this analysis. The exception is the CCSM model for which output is 
available only through 2017 (rather than 2018). For this model alone we construct climatologies over 2014–2017. 
Additionally we have included the abiotic data-assimilation model OCIM (DeVries, 2014, 2022) where appropri-
ate in our analysis. Although more commonly applied to the uptake of anthropogenic carbon, the abiotic nature of 
the OCIM model is of value as an endmember case in evaluating potential biotic biases in the GOBMs.

Air-sea heat fluxes for the GOBMs used throughout RECCAP2 are calculated with bulk formulae following the 
protocols of Large and Yeager (2009). This method does not impose a specific nudging or restoring of simulated 
sea surface temperature (SST) to observed SST, but rather imposes a negative feedback to SST through heat 
fluxes determined using observed surface boundary layer atmospheric temperatures. In this way, the simulation 
of seasonal variations in SST shows strong fidelity to observations when aggregated over biome scales.

2.6. Attribution Analysis

2.6.1. Attribution of Drivers of the Climatological Seasonal Cycle in pCO2

The first stage of the attribution analysis has the goal of identifying the mechanisms responsible for discrep-
ancies between pCO2 products and GOBMs in representing the climatological seasonal cycle of pCO2. We 
will consider both a decomposition into thermal and nonthermal drivers, using the analysis methods presented 
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by Fassbender et  al.  (2022). The thermal/nonthermal decomposition 
provides a valuable means to identify spatially regions where seasonal 
SST variations are or are not the dominant driver of seasonal variations 
in pCO2. We will also apply the Taylor Series decomposition method 
previously considered by Sarmiento and Gruber (2006), where we use 
the formulation:

��CO2

��
=
(

��CO2

�nDIC

)

(�nDIC
��

)

+
(

��CO2

�nTA

)

(�nTA
��

)

+
(

��CO2

�SSS

)

(�SSS
��

)

+
(

��CO2

�SST

)

(�SST
��

)
 (1)

For this formulation, we consider salinity-normalized DIC and TA 
(nDIC and nTA, respectively), to remove the dilution effects from the 
DIC and TA contributions. For our interests here, the terms on the 
right-hand-side of Equation 1 will provide estimates of the sensitiv-
ity of pCO2 seasonality, and thus its amplitude and phasing, to the 
seasonal evolution of nDIC, nTA, SST, and SSS. In this way we will 
evaluate any discrepancies that may call into question the fidelity 
of modeled pCO2 to the real ocean. This analysis is possible for all 
GOBMs and the three observation-based products that  include DIC 
and TA. The details of the coefficients used in Equation 1 are provided 
in Equations S1–S9 of the Supporting Information S1, with averaged 
values for the pCO2/TA products provided in Table S1 in Supporting 
Information S1.

Additionally mixed layer depth (MLD) products will be used as part of 
our attribution analysis. For the sake of consistency with our choice of 
the relatively data-rich period 2014–2018 for evaluating climatologies 
of pertinent variables, we present a MLD product for this period 2014–
2018 derived from the gridded monthly Argo product of Roemmich 
and Gilson (2009) for temperature and salinity. We define MLD by a 
density threshold through application of the MLD definition of Holte 
and Talley (2009).

2.6.2. Attribution of Decadal Changes in the Seasonal Cycle of 
pCO2

The second stage of attribution analysis consists of applying the method 
of Fassbender et  al.  (2022) to identify the drivers of decadal changes 
in pCO2 seasonality over 1985–2018. The method provides a means to 
separate the impacts of the invasion flux of anthropogenic carbon from 
the atmosphere from other climate signals that can modulate the seasonal 
cycle in pCO2. More specifically, the goal for this work will be to iden-
tify the direct impact of an increase in the anthropogenic carbon (Cant) 
content of surface waters (i.e., a decrease of the surface ocean buffering 
capacity) relative to climate change and natural variability impacts on 
pCO2 seasonality changes over 1985–2018. The original application by 
Fassbender et  al.  (2022) was for 21st century LE projections with an 
ESM, where the ensemble mean of the LE was considered to identify the 
forced component of change. Here our intention is to apply the method 
to the period 1985–2018 for all GOBMs (Table 3) and the three gridded 
pCO2/TA products that include associated monthly DIC and TA fields 
along with SST and SSS (Table 2).M
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The method of Fassbender et al. (2022) is a modified version of the framework originally developed by Takahashi 
et al. (1993, 2002), where for each grid point local temperature and pCO2 are used as follows to define the thermal 
(pCO2 T) and nonthermal (pCO2 NT) components of pCO2 seasonal variability:

𝑝𝑝CO2T = 𝑝𝑝CO2am ∗ exp[0.0423 (𝑇𝑇mm − 𝑇𝑇am)] (2)

𝑝𝑝CO2NT = 𝑝𝑝CO2mm ∗ exp[0.0423 (𝑇𝑇am − 𝑇𝑇mm)] (3)

Within this Takahashi et al. (1993) approach of Equations 2 and 3, the subscripts am and mm represent annual means 
and monthly means, respectively. However, one of the limitations of the method of Takahashi et al. (1993, 2002) 
is that the two components in Equations  2 and  3 do not sum to reproduce the full pCO2 seasonal cycle (e.g., 
pCO2 mm ≠ pCO2 T + pCO2 NT − pCO2 am). This is because the thermal sensitivity of pCO2 (expressed with a factor of 
0.0423/°K in the equations above) in fact varies slightly with background chemistry (Wanninkhof et al., 1999, 2022).

In this study, we use the alternative approach of Fassbender et al. (2022), where an important focus of the analysis 
is to identify asymmetries in seasonal pCO2 variations. For this case, rather than working with an annual mean 
pCO2 to characterize asymmetries, one defines a neutral pCO2 with respect to the annual cycle as being the pCO2 
one would obtain using annual means of its drivers (T, S, DIC, TA, PO4, and SiO4, where we use T and S as 
shorthand for SST and SSS), with this reflecting the mean pCO2 if pCO2 were to respond linearly to the seasonal 
variability of its drivers. With this in mind, pCO2 AM is given by:

𝑝𝑝CO2AM = 𝑓𝑓

(

𝑇𝑇 𝑇 𝑆𝑆𝑇DIC𝑇TA𝑇PO4𝑇SIO4

)

 (4)

where the function f() represents a carbon system calculator. The time-varying (monthly mean) thermally driven 
pCO2 component can be identified using the same approach but by using monthly varying output temperature for 
the carbonate system calculator:

𝑝𝑝CO2 𝑇𝑇 FASS = 𝑓𝑓

(

𝑇𝑇mm, 𝑆𝑆,DIC,TA,PO4, SIO4

)

 (5)

where the subscript FASS and the term on the left-hand side denote that the calculation follows the method devel-
oped by Fassbender et al. (2022), as this is the approach that will be applied in this study. Within this approach, 
the thermal pCO2 component seasonal cycle anomaly is then determined as:

𝑝𝑝CO2 𝑇𝑇anom = 𝑝𝑝CO2 𝑇𝑇 FASS − 𝑝𝑝CO2AM (6)

making it possible to calculate the nonthermal component by difference:

𝑝𝑝CO2NTFASS = 𝑝𝑝CO2 − 𝑝𝑝CO2 𝑇𝑇anom (7)

The subscript FASS here as well denotes that this is calculated following the method described in Fassbender 
et al. (2022), rather than Takahashi et al. (1993, 2002). These definitions for thermal and nonthermal decom-
position in Equations 6 and 7, are applied in Figure 6. To attribute decadal changes in pCO2 seasonality to Cant 
and identify whether decadal changes project differently onto summer and winter conditions, we independently 
reconstruct the nonthermal pCO2 term following the method outlined in Supporting Information S1.

2.7. Uncertainty Analysis for Detecting the Anthropogenic Signal

As in the study of Fassbender et al. (2022), we apply large ensemble (LE) simulations with ESMs to aid in our iden-
tification of forced changes in pCO2 seasonality in the presence of non-negligible background variability. Whereas 
Fassbender et al. (2022) focused on centennial timescale projections and could rely on the ensemble mean to isolate 
forced signals, we are here faced with a different challenge of identifying forced changes over shorter historical records 
(namely the RECCAP2 period spanned by 1985–2018). Stated differently, for the decadal changes in pCO2 season-
ality that we intend to identify for the nine pCO2 products in this study, we wish to apply LE simulations to estimate 
quantitatively our degree of confidence that the observed decadal changes represent anthropogenically forced signals.

The LE models considered here are listed in Table 4. The first set of models were run under CMIP5 protocols 
using historical/RCP8.5 forcing (CanESM2, ESM2M, and CESM1) and the second set were run under CMIP6 
protocols with historical/SSP3-7.0 forcing (CanESM5 and CESM2). Such a mix of CMIP5 and CMIP6 is appro-
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priate to our interest in the historical period spanning 1985–2018, as the total 
radiative forcing component for the CMIP5 and CMIP6 forcing pathways is 
very similar through 2018 (Riahi et al., 2017). These LE outputs are not part 
of the resources made available through RECCAP2 but were rather collected 
by the authors through a modest expansion of the collection of LE models 
considered by Schlunegger et  al.  (2020) and Gloege et  al.  (2021). We are 
particularly interested in evaluating confidence levels for emergent changes 
between the time intervals 1985–1989 and 2014–2018, where the ensemble 
mean changes (signal) and natural variability in the changes (noise) provide 
a means to identify the signal-to-noise ratio (SNR) and thereby characterize 
the degree of emergence or detectability.

For the attribution of decadal changes in pCO2 seasonal amplitude, we have 
applied the CESM2-LE, as this was deemed to have better correspondence 

with climatological pCO2 variability over biome scales than the other models (this will be addressed in Figure 12). 
The application of CESM2-LE will allow us to address the degree of confidence that we have in distinguishing 
the impact of the invasion flux of anthropogenic carbon from climate-driven perturbations. CESM2-LE is also 
applied to identify the degree to which thermal and nonthermal drivers of pCO2 seasonality changes are emergent.

2.8. CMIP6 Models

This study also includes analyses of 11 CMIP6 ESMs that are evaluated for their agreement with the pCO2 prod-
ucts over biome scales, with the models listed in Table 6. As ESMs are used for future projections of the ocean 
carbon sink, it is of interest to assess their fidelity in reproducing the seasonal cycle and its underlying processes. 
The CMIP6 models are not intended to correspond to coupled versions of the GOBMs considered here, but our 
goal is rather to identify similarities or discrepancies between these CMIP6 models, the GOBMs, and observa-
tional pCO2 products. For the CMIP6 models we have opted to focus on a slightly different period, namely the 
five years (2010–2014) at the end of the historical component of CMIP6 simulations, rather than the 2014–2018 
interval considered for the GOBMs.

3. Results
3.1. Overview of Multi-Decadal Changes in CO2 Flux and pCO2 Seasonality

The evolution of air-sea CO2 flux seasonality, considered as averages over the six biomes, is shown in Figure 1 as 
time series of the annual minimum and annual maximum of the monthly sea-air CO2 fluxes for the pCO2 products 
and GOBMs. Here, we have chosen to show the maximum and minimum of the fluxes to represent the full range 
of the seasonal cycle. One should keep in mind that the across-product ensemble spread also includes the impacts 
of wind speed on gas exchange that are not treated the same way across products (the details for the individual 
products can be found in the references in Table 2).

A prominent feature in Figure 1 is that the amplitude of the seasonal cycle in CO2 fluxes is consistently 
larger for the GOBMs than it is for the pCO2 products, across all biomes (see also Figure S1 in Supporting 
Information S1). From the RECCAP2 GOBMs alone it is not possible to determine the degree to which 
these internal disagreements reflect structural differences between the GOBMs and the degree to which 
it represents differences in forcing of the GOBMs. It is also worth noting that both the GOBMs and pCO2 
products exhibit a non-negligible degree of natural variability (interannual to decadal), for both the maxima 
and minima.

A decadal trend toward increased seasonal amplitude of biome-integrated CO2 fluxes is evident over the subtrop-
ical biomes, as well as for NP-SPSS, whereas for NA-SPSS and SH-SS biomes this is less evident (especially in 
the pCO2 products, see also Figure S1 in Supporting Information S1). The increase in the amplitude, where  it 
exists, can be accounted for mainly by a decrease of the annual minima (i.e., an increase of the uptake flux), 
whereas the annual flux maxima remained comparably constant over time. To better constrain whether there are 
discernible decreases in the spread amongst the pCO2 products over 1985–2018 as pCO2 observations increase, 
the biome-averaged pCO2 for seasonal maximum and seasonal minimum are shown in Figure S2 in Supporting 
Information S1, where although there is a decrease for both NA-SSS, SH-STPS, and SH-SS between 1985 and 
2018, for the other biomes the changes are rather small. The broad-scale view of the evolution of CO2 fluxes in 

Earth system model References Comments

CESM2 (CMIP6) Rodgers et al. (2021) 50 members

CanESM2 (CMIP5) Kirchmeier-Young et al. (2017) 50 members

CanESM5 (CMIP6) Swart et al. (2019b) 24 members

CESM1 (CMIP5) Kay et al. (2015) 34 members

ESM2M (CMIP5) Rodgers et al. (2015) 30 members

MPI-GE (CMIP5) Maher et al. (2019) 100 members

Table 4 
Large Ensemble Simulations Used in the Analysis in Figure 12
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Figure 1 serves to motivate much of the analysis that follows, with emphasis devoted to pCO2 rather than CO2 
fluxes as a means to facilitate attribution and mechanistic understanding. Nevertheless, we will return to CO2 
fluxes in the discussion of decadal trends in seasonal cycle amplitude.

3.1.1. Climatological Seasonal Cycle of pCO2 and Multi Decadal Changes

The climatological monthly pCO2 seasonal cycle over 2014–2018 as a zonal mean is shown in Figure 2. For the 
pCO2 products (Figure 2a), pCO2 is highest in the subtropics in summer and highest in the Northern Hemisphere 
subpolar region and in the Southern Ocean in winter. The GOBMs (Figure 2e) agree with the pCO2 products in 
their seasonal phasing in the subtropics but are in disagreement in the Northern Hemisphere subpolar regions 
and the Southern Ocean. As a measure of the internal consistency across the nine pCO2 products and the 11 
GOBMs for this 2014–2018 climatology, the standard deviation is calculated month-by-month across the pCO2 
products (Figure 2b) and across the GOBMs (Figure 2f). From this we learn that the agreement across the pCO2 
products is robust (<10% disagreement relative to the annual cycle amplitude), whereas internal disagreements 
are much larger across the GOBMs (larger than 20% of the annual cycle amplitude at some locations), with the 
GOBMs diverging the most north of 30°N and south of 30°S. For the Northern Hemisphere subpolar regions, 
the disagreement in the GOBMs is largest in summer, and over the Southern Ocean it is largest in summer and 
in late winter.

Figure 2. Hovmöller diagrams of zonally averaged climatological (2014–2018) pCO2 anomalies for pCO2 products (a) and 
GOBMs (e), and corresponding standard deviations (b, f); multi-decadal change in pCO2 climatology between 1985–1989 
and 2014–2018 for pCO2 products (c) and GOBMs (g) and corresponding standard deviation (d, h). For the ensemble mean, 
the seasonal maxima (black triangles) and minima (white triangles) are highlighted in panels (a) and (e). Anomalies were 
calculated, gridpoint by gridpoint, by first fitting a quadratic polynomial through the full monthly time series over the period 
1985–2018 and removing this trend from the data. Then, mean pCO2 values over 1985–1989 and 2014–2018 were calculated 
for each month as a deviation from the detrended mean pCO2 over the whole 5-year period.
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We also consider the multi-decadal changes in the climatological monthly pCO2 seasonal cycle between 1985–
1989 and 2014–2018 for the pCO2 products (Figure 2c) and for the GOBMs (Figure 2g). For both the pCO2 
products and the GOBMs (Figures  2c and  2g, respectively), the meridional patterns of increases in seasonal 
amplitude to first order reflect an amplification of the climatological seasonal cycle in the Northern Hemisphere 
subtropical and subpolar biomes. However, this is less clear in the Southern Hemisphere subtropics and over the 
Southern Ocean.

3.1.2. Spatial Structure in the Seasonal Amplitude Change

To understand the spatial structure of the amplitude change and the coherence between pCO2 products and 
between GOBMs, maps of changes in the amplitude of the pCO2 seasonal cycle between 1985–1989 and 2014–
2018 are shown for the pCO2 products in Figure 3a and for the GOBMs in Figure 3b. We use two definitions for 
the amplitude assessment: winter-minus-summer (JFM minus JAS for the Northern Hemisphere and JAS minus 
JFM for the Southern Hemisphere) in Figures 3a and 3b and climatological monthly minimum-minus-maximum 
in Figures 3c and 3d. For both the GOBMs and the pCO2 products, regions where the multi-decadal trends are not 
significant (defined using a one standard deviation threshold) are stippled. From this we can see that the Northern 
Hemisphere has more significant changes than the Southern Hemisphere. Nevertheless, for both hemispheres for 
GOBMs and pCO2 products the broadest regions of significant changes are in the subtropics, although there is 
also a significant trend in the eastern subpolar North Pacific.

The two different definitions of seasonal amplitude (winter-minus-summer and minimum-minus-maximum) 
result in very similar large-scale patterns. While for the minimum-minus-maximum definition negative changes 
always indicate an increase in seasonal amplitude, the winter-minus-summer amplitude is negative over the 
subtropical domain and positive in high latitudes, such that negative (positive) values for the multi-decadal 
amplitude change in Figures 3a and 3b over the subtropics (high latitudes) also indicate an amplitude increase. 
Phasing differences in seasonality are treated differently with the two definitions, since winter-minus-summer 
refers to fixed time intervals while the minimum and maximum can occur at any time throughout the year. While 

Figure 3. Multi-decadal changes in the pCO2 seasonal amplitude between the two 5-year periods 1985–1989 and 2014–2018, 
for (a, c) pCO2 products and (b, d) GOBMs. For panels (a) and (b), seasonal amplitude is calculated as a winter-minus-
summer difference, where winter and summer are defined as JFM and JAS (JAS and JFM) for the Northern (Southern) 
Hemisphere, respectively. For panels (c) and (d) seasonal amplitude is calculated as minimum-minus-maximum. Dotted 
regions indicate where the spread of the ensemble members (STD = 1 level) is larger than the ensemble mean multi-decadal 
change. For this analysis, the nine pCO2 products listed in Table 2 and the 11 GOBMs in Table 3 (excluding OCIM) are used. 
The sensitivity to the choice of 5-year versus 10-year versus 15-year averaging for characterizing decadal changes is displayed 
in Figure S3 in Supporting Information S1.
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the winter-minus-summer definition highlights differences in phasing between pCO2 products and GOBMs, 
it conceals some of the changes in the seasonal amplitude, specifically if the minimum or maximum of the 
seasonal cycle occurs outside of winter or summer months (as seen in Figure  3d in the high latitude North 
Atlantic and North Pacific, where the discrepancy between GOBMs and pCO2 products is much larger for the 
winter-minus-summer definition).

For the remainder of our analysis we will use the winter-minus-summer definition of seasonality due to its 
simplicity when it comes to analysis of multiple models and products, and also for consistency with previous 
work (e.g., Landschützer et al., 2018), keeping in mind that the specifics of this definition (the choice of JFM and 
JAS for defining seasonal amplitude) are sensitive to phasing differences between GOBMs and pCO2 products. 
The sensitivity of the choice of 5-year versus 10-year versus 15-year climatologies for the case of the pCO2 prod-
ucts (Figure S3 in Supporting Information S1) indicates that the results are robust to the length of the climatolo-
gies, the main difference being that using 10-year or 15-year climatologies shortens the effective decadal-change 
interval and weakens the signal of interest.

The fields shown in Figures 3a and 3c reveal important information about uncertainty in detecting multi-decadal 
changes in pCO2 seasonality using pCO2 products. As all of the products are based upon the same un-gridded 
SOCAT data product, differences in multi-decadal changes shown in Figures  3a and  3c are due to mapping 
differences rather than differences in the basis data itself. As such, the stippled regions indicate where mapping 
uncertainty is large relative to resolved decadal changes. We interpret mapping uncertainty to be a reducible vari-
ety of uncertainty, in that with improved data coverage and expansion of the ocean observing system the products 
should be expected to converge.

For the GOBMs (Figures 3b and 3d) the regions of significance are very similar to what is shown for the pCO2 
products, but the underlying reasons for uncertainty are of course fundamentally different. For the GOBMs, 
regions where trends are not significant reflect the combined effect of structural differences between models and 
differences in GOBM forcing (as was described in Methods Section 2.5, some of the models were forced with 
CORE, while others were forced with JRA-55). The uncertainty shown in Figures 3b and 3d for the GOBMs 
should also be considered as a reducible variety of uncertainty.

Nevertheless, it should also be noted that for both pCO2 products and GOBMs that it is the subtropics where the 
thermal component of pCO2 seasonality has the weakest opposition from the nonthermal component that there 
is emergence. Thus, both mapping uncertainty and presumably structural uncertainty with GOBMs are mostly 
problematic in regions where the nonthermal drivers become important. This will be discussed further in subse-
quent analyses of this study.

3.1.3. Biome Aggregated Climatologies

Climatological monthly anomalies in pCO2 and its primary drivers, SST and surface DIC, relative to their annual 
means are displayed in Figure 4 as (area-weighted) averages across the RECCAP2 biome regions. A first compar-
ison between the full collection of pCO2 products (blue) and all GOBMs (green) is shown in the first column of 
Figure 4 by biome region, where continuous lines and associated shading represent the mean and one standard 
deviation, respectively. Our first objective is to identify discrepancies between the GOBMs and the pCO2 prod-
ucts, with such discrepancies to be addressed subsequently in Section 3.2, where we consider attribution.

In broad terms, the seasonal phasing agreement between GOBMs and pCO2 products is best in subtropical biomes 
(NH-STSS, NH-STPS, and SH-STPS) and worst in the Northern Hemisphere subpolar and the Southern Ocean 
biomes (NA-SPSS, NP-SPSS, and SH-SS). In the NA-SPSS and NP-SPSS biomes, GOBMs consistently represent 
seasonal pCO2 minima that occur earlier than in the pCO2 products, and that are weaker for NA-SPSS. For NA-SPSS 
and NP-SPSS, after the spring minimum in pCO2 in the GOBMs there is an increase toward a maximum in August, 
whereas the pCO2 products remain low throughout the summer before increasing in autumn and winter toward a 
maximum in January/February. Analogous to what is found in the Northern Hemisphere subpolar biomes, there 
are also discrepancies in phasing for the GOBMs relative to the pCO2 products for SH-SS. For the higher latitude 
regions where phasing in models diverges greatly from that seen in the pCO2 products, it is widely understood that 
the early summer minimum in pCO2 (as seen in pCO2 products) is directly related to biological drawdown of DIC 
(Gregor & Gruber, 2021; Lauderdale et al., 2016). It is a known bias of coupled models that primary production is 
often not realistically sustained through summer after a pronounced spring bloom. This has been shown in the North 
Atlantic (Goris et al., 2018; Person et al., 2018), and more broadly for the high latitudes of both hemispheres (Cabré 
et al., 2016; Mongwe et al., 2018; Nevison et al., 2016), and the same limitation appears to be pertinent in our study.
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In the subtropical biomes, on the other hand, the GOBMs consistently simulate a pCO2 seasonal cycle that 
is larger than what is seen in the pCO2 products (Table 5). For NH-STSS the amplitude averaged across the 
GOBMs is 80% larger than for that averaged across the pCO2 products, for NH-STPS it is 26% larger, and for 
SH-STPS it is 34% larger. This occurs with phasing that is largely consistent between the GOBMs and pCO2 
products. As seen in Figure 4 (second column), this discrepancy in the amplitude of pCO2 variations does not 
reflect biases in the seasonal amplitude of SST variations, as the thermodynamic boundary conditions for forc-
ing the GOBMs result in SSTs that have relatively strong fidelity to observations when averaged over biome 
scales. Rather, the discrepancy in the amplitude of the pCO2 seasonal amplitude indicates that surface DIC 

Figure 4. Climatological seasonal cycle anomalies for 2014–2018 for pCO2 (left column), SST (center column, dashed) and DIC (center column, solid), and change 
in pCO2 seasonal cycle anomalies between 1985–1989 and 2014–2018 (right column) over the six aggregated biomes for GOBMs (green), pCO2 products (blue), and 
for OCIM (brown, dashed). The biome names as defined in Table 1 and Figure 1 are given in each panel title. Ensemble means for GOBMs and pCO2 products are 
shown as thick lines while the shading indicates the standard deviation around the mean. Note the different scales of the left and right columns, and that the Southern 
Hemisphere sub-plots begin with the month of July.
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(Figure 4, second column) as the main driver of the nonthermal component 
of pCO2 seasonality is not providing sufficient counterbalance to the realistic 
thermal component of seasonal forcing (i.e., the seasonal amplitude seems 
to be too small in GOBMs). For the subtropical biomes it is worth noting 
that the OCIM model (Figure 4, thin line) has an even larger pCO2 seasonal 
amplitude than the GOBMs. The OCIM model has a realistic SST seasonal 
evolution (not shown) but simulates only circulation- and surface flux-driven 
DIC variations without including a contribution of the biological drawdown 
of DIC. The OCIM pCO2 and DIC seasonal cycle amplitude discrepancies 
relative to the GOBMs provide an estimate of the contribution of the biolog-
ical pump to DIC and pCO2 seasonality.

The fact that the DIC seasonal amplitude is weaker for the GOBMs rela-
tive to the pCO2 products means that the nonthermal component of pCO2 
seasonality is smaller. Over the subtropical regions, this will serve to enhance 
the thermal dominance of seasonal pCO2 variations and in the subpolar and 
circumpolar regions this will reduce the nonthermal dominance of seasonal 
pCO2 variations. This provides a means to alter the phasing of pCO2 varia-
tions, although the degree to which this occurs will be modulated by the back-
ground mean state of DIC and TA (Fassbender et al., 2018). In all biomes, 

the DIC seasonal amplitude for GOBMs lies between that of the abiotic OCIM model and that of the pCO2/TA 
products, suggesting that for the GOBMs there may be as-yet undetermined shortcomings in the representation of 
the seasonal processes that increase DIC (entrainment) and decrease DIC (net biological consumption of DIC).

Comparing the decadal changes (Figure 4, right column) with the climatologies over 2014–2018 (left column), we 
see again that the decadal changes in pCO2 to first order amplify the climatological seasonal cycle in the Northern 
Hemisphere as well as for SH-STSS, consistent with what was identified in the Hovmöller diagrams in Figure 2. 
Importantly, the pCO2 products show significantly less internal disagreement for the climatological seasonal cycle 
(left column of Figure 4 and Table 5) than the GOBMs. Yet, for the decadal changes (right column of Figure 4), 
the spread across the GOBMs and across the pCO2 products is similar (one standard deviation for the biome aver-
aged seasonal amplitude changes are roughly between 1 and 10 ppm, Table 5). While this is of the same order of 
magnitude as for their seasonal amplitude for the pCO2 products, GOBMs show significantly less internal disa-
greement for the decadal change than for the seasonal amplitude. This indicates that the processes responsible for 
the increase in seasonal pCO2 amplitude are relatively well represented in GOBMs We hypothesize here that the 
pertinent process in the GOBMs is the invasion flux of Cant dominating pCO2 seasonality modulations associated 
with climate-driven changes in the state of the ocean, a hypothesis to which we will return in the next section on 
attribution. The best agreement for decadal changes in the pCO2 seasonal amplitude occurs in the subtropical 
biomes, consistent with Figure 2. For NH-STSS, the GOBMs show a mean net increase in the seasonal ampli-
tude of 10.7 μatm and the pCO2 products of 9.8 μatm, with the difference in their increase being less than 10%. 
For NH-STPS, the mean net increase in the seasonal amplitude for the GOBMs and pCO2 products are the same 
at 6.3 μatm. For SH-STPS the increase for GOBMs is 2.7 μatm, which is approximately half of the mean pCO2 
product increase of 5.3 μatm. It can also be seen in Table 5 that the relatively consistent ranges of change over the 
subtropical biomes between GOBMs and pCO2 products are approximately within each other's uncertainty range.

3.2. Attribution

Having evaluated the seasonal cycle of pCO2 in terms of its phasing and amplitude, as well as related discrep-
ancies between the pCO2 products and the GOBMs, we now turn our attention to attribution of the drivers. We 
have already inferred from the biome-aggregated analyses in Figure 4 that DIC should be explored as having a 
potential first-order role in modulating the differences between pCO2 products and GOBMs.

3.2.1. Spatial Patterns of the Seasonal Cycle in Surface DIC Concentrations

The spatial patterns for the surface DIC seasonal cycle amplitude (winter-minus-summer, climatology over 
2014–2018) for the pCO2./TA products is shown in Figure 5a (average across JMAMLR, CMEMS-LSCE-FFNN, 

GOBMs pCO2 products

Region
pCO2 

amplitude

pCO2 
amplitude 

change
pCO2 

amplitude

pCO2 
amplitude 

change

NA-SPSS −18.5 ± 18.5 −2.1 ± 9.9 46.0 ± 4.9 5.9 ± 6.1

NP-SPSS −34.1 ± 29.3 −8.3 ± 6.0 17.1 ± 4.3 2.8 ± 7.7

NH-STSS −67.8 ± 16.2 −10.7 ± 3.2 −37.2 ± 1.7 −9.8 ± 3.9

NH-STPS −42.0 ± 6.7 −6.3 ± 1.1 −33.2 ± 2.4 −6.3 ± 2.8

SH-STPS −39.5 ± 10.7 −2.7 ± 2.0 −29.4 ± 3.2 −5.3 ± 2.7

SH-SS −5.8 ± 14.7 0.6 ± 1.4 11.4 ± 2.4 1.0 ± 2.5

Note. Seasons are defined as the 3-month periods JFM and JAS. Change 
represents the difference between 1985–1989 and 2014–2018, Units are 
μatm.

Table 5 
Seasonal Amplitude (Winter-Minus-Summer) of Biome Averaged pCO2 for 
GOBMs and pCO2 Products for the Period 2014–2018
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and OceanSODA-ETHZ, as well as for the GOBMs in Figure 5b. We see a good agreement between the ampli-
tude of the surface DIC seasonal cycle from pCO2/TA products and the GOBMs for the overall patterns with 
maximum values seen in the Northern Hemisphere subpolar domains. For the pCO2/TA products we also see a 
zonally oriented local surface DIC maximum across 40°–45°S that can be distinguished from a local minimum 
over the Antarctic Circumpolar Current (ACC) region between 50° and 60°S, with this feature being more weakly 
present in the GOBMs. The differences in the seasonal amplitude of DIC (GOBMs minus pCO2/TA products) 
in Figure 5c indicates a negative bias of the GOBMs that is relatively consistent over large scales, and that is 
particularly pronounced at northern high latitudes.

The zonal average of the amplitude of the seasonal cycle (winter-minus-summer) in DIC is shown in Figure 5d. 
Additionally the amplitude of the surface ocean DIC seasonal variability for the two three-dimensional DIC 
climatologies, namely MOBO-DIC and NNGv2LDEO are also shown. The MOBO-DIC product tends to have 
a seasonal amplitude that is somewhat larger than the surface DIC products over most latitudes, except over the 
Southern Ocean and over 30°–45°N. NNGv2LDEO is also larger than the GOBMs over most latitudes, also with 
an exception to the north of 50°N but not over the Southern Ocean.

The same collection of products considered as zonal means in Figure 5d are shown as biome averages in Figure 
S4 in Supporting Information S1, along with the OCIM product. This further illustrates that there is a discrep-
ancy between the weaker DIC seasonal amplitude of GOBMs relative to not only the pCO2/TA products but also 
to MOBO-DIC and NNGv2LDEO, although the seasonal DIC amplitude of MOBO-DIC is smaller than that of 
all other observation-based products (and thus closer to the GOBMs) in the high latitude biomes (NA-SPSS, 
NP-SPSS, and SH-SS). Interestingly, for both large permanently stratified biomes (NH-STPS and SH-STPS) the 
late summer seasonal minimum in DIC concentrations for the MOBO-DIC and NNGv2LDEO products precedes 
that of the pCO2/TA products.

Figure 5. Climatological seasonal amplitudes in surface DIC concentrations over 2014–2018 considered as winter-minus-summer (JFM-JAS for the Northern 
Hemisphere and JAS-JFM for the Southern Hemisphere) for (a) the average of three pCO2/TA (DIC) products (JMAMLR, CMEMS-LSCE-FFNN, and 
OceanSODA-ETHZ), (b) the average across 11 GOBMs, and (c) the difference between (b) and (a), where negative (positive) values indicate that GOBMs 
under-represent (over-represent) the climatological seasonal amplitude of DIC variability. (d) shows latitudinal averages for GOBMs (green) and data products (blue), 
where bold lines represent product averages, and light lines indicate individual products. Also shown in (d) are MOBO-DIC (red dashed) and NNGv2LDEO (red solid). 
The MOBO-DIC climatology corresponds to the period 2004 through 2017 and NNGv2LDEO to 1995.
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3.2.2. pCO2 Seasonality Differences Between Observational Products and GOBMs

To systematically attribute discrepancies in the pCO2 seasonal cycle between GOBMs and pCO2 products to 
their drivers, we begin with an analysis of the relative importance of the thermal and nonthermal drivers of pCO2 
seasonal variability following the framework of Fassbender et al. (2022) (see Methods Section 2.6.2 as well as 
the final section of the Supporting Information S1 for a description). For this approach, in contrast to the widely 
applied deconvolution method of Takahashi et al.  (1993, 2022), monthly pCO2 deviations in a given year are 
considered relative to pCO2 values calculated from annual mean values of SST, SSS, DIC, TA, PO4 and SiO4. 
This approach is chosen instead of considering pCO2 deviations from the annual mean of pCO2, as working with 
the annual mean can obscure seasonally asymmetric pCO2 responses to its drivers.

Within this analysis we consider for each grid point the absolute value of the differences between the winter and 
summer seasonal averages over 2014–2018. The difference between the thermal and nonthermal pCO2 amplitudes 
is shown for the observational products (Figure 6a) and for the GOBMs (Figure 6b). We have opted to show 
differences between thermal and nonthermal amplitudes, represented in units of μatm, rather than the dimen-
sionless ratio of these two quantities, as this provides some context for the magnitude of the difference between 
the ranges of pCO2 extremes for the thermal and nonthermal components. For both panels, positive values (red) 
indicate that the thermal pCO2 component dominates the seasonal cycle amplitude and negative  values (blue) 
indicate that the nonthermal component dominates for this climatological diagnostic.

We see consistency between the pCO2 products (Figure 6a) and the GOBMs (Figure 6b) in that the thermal pCO2 
component is dominant over the subtropics, with this dominance being even stronger for the GOBMs. Over the 

Figure 6. Ensemble mean difference between the thermal and nonthermal pCO2 component of its seasonal cycle amplitude 
(ΔA) for (a) the three pCO2 products that include associated DIC and TA products (JMAMLR, OceanSODA-ETHZ, and 
CMEMS-LSCE-FFNN and (b) 11 GOBMs. (c) Zonal mean of ΔA values for GOBMs and pCO2 products with bold lines 
showing the ensemble mean values. The olive-colored line shows the abiotic OCIM model, which is not included in the 
model ensemble mean. pCO2 component seasonal cycle amplitudes were computed as the absolute value of the difference 
between the winter-minus-summer seasonal averages over 2014–2018. For each case the separation into thermal and 
nonthermal components follows the approach of Fassbender et al. (2022), where a carbon system calculator (CO2SYS) is 
used to quantify the thermal component, and thereby the nonthermal component via difference from the full pCO2 annual 
cycle. Seasons are defined as JFM and JAS.
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northern subpolar gyres and the Southern Hemisphere circumpolar regions there is a pronounced disagreement 
between the pCO2 products and the GOBMs. Specifically, for the pCO2 products the nonthermal pCO2 compo-
nent is dominant in these biomes, while the GOBMs exhibit a relatively strong thermal component in these 
regions. These discrepancies between the pCO2 products and GOBMs are also shown for each GOBM and pCO2 
product separately in Figure 6c, revealing the relatively strong agreement between the pCO2 products and the 
disparity between the GOBMs that was also in evidence in Figure 4 for pCO2 itself averaged over biome scales.

As we have identified in Figures 4 and 5, there is a systematic discrepancy between GOBMs and pCO2 products, 
with GOBMs indicating a weaker climatological seasonal cycle in DIC variations, which is consistent with a 
more pronounced dominance of the thermal component of pCO2 seasonality highlighted in Figure 6. Next, we 
evaluate whether the nonthermal pCO2 component discrepancy between GOBMs and pCO2 products can be 
explained by the smaller DIC seasonal variability in the GOBMs.

We consider the drivers of the climatological pCO2 seasonal cycle during 2014–2018 over the six aggregated 
biomes in Figure 7. This is done through the application of Equation 1, where the details of the Taylor Series 
decomposition terms used in Equation 1 are provided through Equations S1–S9 of the Supporting Information S1, 
and the coefficients by biome are given in Table S1 in Supporting Information S1. The left column of Figure 7 
shows pCO2 climatologies for the pCO2 products (blue) and the GOBMs (green). This serves as a reminder that 
over the NA-SPSS, NP-SPSS and SH-SS domains, there are fundamental discrepancies between the GOBMs 
and the pCO2 products in their representation of both the phase and amplitude of pCO2 seasonality, while in 
NH-STSS, NH-STPS, and SH-STPS regions the amplitude of the seasonal cycle of pCO2 is consistently larger in 
GOBMs. In order to understand the cause of these discrepancies, a decomposition of the month-to-month changes 
in pCO2 into its main drivers (SST, SSS, nDIC, and nTA) is presented in the second and third column of Figure 7. 
For the pCO2 products (Figure 7, second column) the SST term dominates over the nDIC term in the subtropics, 
while the nDIC contribution is dominant in the subpolar biomes of the Northern Hemisphere and high latitude 
regions of the Southern Hemisphere. For each of these six biomes, we see that the GOBMs have a smaller nDIC 
contribution (third column of Figure 7) when compared to the pCO2 products (second column of Figure 7).

It is worth noting for the observational pCO2 products (second column in Figure 7) that although the effect of 
the spring bloom in NA-SPSS is marked by a short nDIC-driven minimum in the pCO2 tendency in April, for 
NP-SPSS the nDIC-driven pCO2 tendency is sustained from April through July (emphasis on the blue nDIC 
tendency line in each case). For the GOBMs (third column in Figure 7) there is no sustained dominance of the 
nDIC contribution relative to SST over most of the seasonal cycle for NA-SPSS and NP-SPSS. For both of these 
biomes the GOBMs simulate weak phytoplankton blooms in late spring as indicated by the nDIC tendency term 
for both cases, with the discrepancies in amplitude being larger than discrepancies in phase. This results in an SST 
dominance of the pCO2 tendency through the summer months, thereby driving pCO2 to peak 6–7 months earlier 
than that of the pCO2 products for each of the two biomes. This represents the impact of the weaker representation 
of the seasonal amplitude of surface nDIC variations for the GOBMs.

In the fourth column of Figure 7, the difference between the GOBM contributions (third column) and the pCO2 
product contributions (second column) allows us to identify nDIC discrepancies as the underlying term that leads 
to the principal different tendencies in pCO2 seasonal amplitude over biome scales. In other words, over these 
aggregated scales the most important driver that causes the disagreement between the pCO2 seasonal cycle of 
the GOBMs and the pCO2 products lies in the processes that control nDIC and equivalently for biome scales 
DIC seasonality. It is important to emphasize that the GOBMs provide a distinct advantage over coupled ESMs 
in studying disagreements between modeled and observation-based pCO2 seasonality, because their climato-
logical  seasonal evolution of SST is effectively imposed from observations. This allowed us to identify and 
understand the potential magnitude of pCO2 seasonality biases that are imposed by a seeming systematic bias 
with GOBMs to underestimate the importance of DIC seasonality. It is worth recalling here that the DIC from the 
pCO2/TA products is more consistent with the independent products (MOBO-DIC and NNGv2LDEO) than with 
the GOBMs (Figure 5d), lending credence to the discrepancies highlighted in Figure 7.

A candidate mechanism that could potentially account for why the GOBMs have smaller seasonal surface 
DIC variability than the DIC products is in the modeled seasonal variability of biological drawdown of 
surface DIC. However, in addressing this question we are faced with the caveat that seasonal variability in 
biological drawdown of surface DIC over global scales is poorly constrained by observations (Lee, 2001; Lee 
et al., 2002). To shed light on this question, we consider in Figure 8 the relationship between climatological 
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(2014–2018) surface salinity-normalized DIC (nDIC) variations and mixed layer depth (MLD) averaged over 
the six biomes. The MLD product is derived from Argo observations, described in Section 2.6.1 of the Meth-
ods section. Figure 8 shows that seasonal MLD variations averaged across the GOBMs are of the same or 
larger amplitude when compared to the observational product. Systematic discrepancies toward deeper mixing 

Figure 7.
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in the models exists in the permanently stratified biomes, and to some extent in the NP-SPSS and NH-STSS 
biomes. However, during summer months when the MLD reaches a minimum, strong nDIC reductions are 
consistently more pronounced in the observations than in the GOBMs in all biomes. This suggests that the 
surface summer DIC drawdown, likely associated with biological drawdown of DIC, is underestimated in 
GOBMs. This could reflect a spurious exhaustion of nutrients by early summer in GOBMs. Investigating these 
questions further is not possible with the tools available through RECCAP2. However, given their importance 
for pCO2, it is strongly advised that process understanding of the potential shortcomings of models in this 
regard be further investigated.

3.2.3. Attribution for Decadal Increases in pCO2 Seasonality

Here we adopt the framework of Fassbender et al. (2022) to address both mechanistically and quantitatively the 
drivers of enhanced pCO2 seasonal amplitude. Specifically, this method allows one to deconvolve the relative 
importance of these drivers, namely the transient invasion flux of anthropogenic carbon (denoted as the Cant 
contribution) and other drivers (denoted collectively as the climate contribution). As the attribution methodol-

Figure 7. Decomposition of the seasonality drivers for pCO2 products and GOBMs (one standard deviation shading for left column) for all six biomes, representing 
the transformed Taylor Series decomposition in Equation 1. The 2014–2018 climatological seasonal cycle of pCO2 (left column) is decomposed into month-to-
month changes due to two physical (SST (orange) and SSS (purple)) and two biogeochemical (salinity-normalized DIC (nDIC, blue) and salinity-normalized TA 
(nAlk, yellow)) drivers (2nd and 3rd column). The observational products are the three products that include DIC and TA, namely JMAMLR, OceanSODA-ETHZ, 
and CMEMS-LSCE-FFNN. Calculations are performed first individually on each product or GOBM, and subsequently averaged to arrive at a mean respectively for 
the observation-based products and GOBMs. The differences in the drivers between the pCO2 products and the GOBMs are shown in the right column—note the 
differences in scale. The drivers are identified via Taylor Series decomposition (Equations S1–S9 in Supporting Information S1) using PYCO2SYS to calculate the 
coefficients for DIC and TA, and using constant values for SST and SSS (dlnpCO2/dT = 0.0423°C −1 and dlnpCO2/dlnS = 1) as in Sarmiento and Gruber (2006). For 
pCO2 itself (left column) the monthly dots are positioned mid-month, mid-way between tick marks. For tendencies (columns two and three) dots are located at the end 
of the month, so on tick marks. SUM in columns two and three represents the sum of the four underlying tendencies.

Figure 8. Seasonal evolution of the relationship between MLD and anomalies of nDIC over the six biomes for a climatology 
over 2014–2018 for observation-based products (blue) and GOBMs (green). The horizontal axis represents MLD, and the 
vertical axis represents seasonal anomalies in nDIC concentrations relative to the annual mean. The stars indicate January, 
and the subsequent months of March, June, September, and December are marked with 3, 6, 9, and 12, respectively. The 
pCO2 products that include DIC and TA, namely JMAMLR, OceanSODA-ETHZ, and CMEMS-LSCE-FFNN, are considered 
along with the full suite of 11 GOBMs. Observationally based MLDs have been derived for this study from the gridded 
Argo-derived temperature and salinity product of Roemmich and Gilson (2009) using a density threshold criterion (Holte & 
Talley, 2009) using the years 2014–2018, for consistency with the nDIC fields.
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ogy of Fassbender et al. (2022) requires not only surface pCO2 but also surface DIC and TA concentrations (in 
addition to SST, SSS, PO4, and SiO4), we focus here on the three RECCAP2 pCO2/TA products that include the 
necessary quantities, specifically JMAMLR, OceanSODA-ETHZ, and CMEMS-LSCE-FFNN in Table 2, as well 
as the GOBMs listed in Table 3. For the observation-based products, monthly climatological PO4 and SiO4 fields 
were taken from World Ocean Atlas 2018 (Garcia et al., 2019).

We begin the analysis for this section on decadal changes in pCO2 and CO2 flux seasonality with a descriptive 
assessment of seasonal asymmetries in the changes in seasonal amplitude between 1985–1989 and 2014–2018 in 
Figure 9. pCO2 anomalies are shown relative to the annual mean value computed from annual means of SST, SSS, 
DIC, TA, and nutrients (pCO2 AM) for both observationally based products and GOBMs, following the method 
described in Fassbender et al. (2022). Calculations are performed separately for each year and then averaged over 
the time intervals 1985–1989 and 2014–2018. This provides an estimate of the annual mean if pCO2 were to 
respond linearly to its individual drivers over the seasonal cycle, making it possible to identify seasonally asym-
metric changes in pCO2 that are obscured when computing a mean of monthly pCO2 values over an annual cycle.

We first consider the case of the subtropics as approximately 15°–40°N and 15°–40°S, where summer anomalies 
of pCO2 for 1985–1989 (Figure 9a) and 2014–2018 (Figure 9b) are larger for the GOBMs than for the pCO2 prod-
ucts, reflecting discrepancies in the amplitude of DIC seasonality between the GOBMs and observation-based 
products discussed previously (Figure 5d). Importantly, between 25° and 40°N and 25°–40°S the summer anom-
alies are larger than the winter anomalies over both time intervals. For the difference between the 2014–2018 
and 1985–1989 intervals (Figure 9c), we see that over the Northern Hemisphere subtropical latitudes the summer 
changes are larger than the winter changes. In other words, notable asymmetry can be identified over the Northern 
Hemisphere subtropics with larger increases in summer highs than decreases in winter lows. North of 45°N there 
are relatively symmetric changes in summer and winter for the observation-based products and the GOBMs, but 
the changes for the two product classes are of reverse sign (see next paragraph) and larger for the pCO2 products. 
The changes for the Southern Hemisphere are less pronounced, with some degree of asymmetry over 10°–25°S 
where for the observation-based products the winter lows decrease more than the summer highs increase. There 
is no discernible asymmetry over the Southern Ocean.

The disagreement between the GOBMs and pCO2 products, both for seasonal pCO2 anomalies (Figures 9a and 9b) 
and their changes (Figure 9c), is largest in the northern subpolar latitudes (45°–60°N). For both the 1985–1989 

Figure 9. Mean summer (S) and winter (W) (a–c) surface pCO2 anomalies and (d–f) CO2 sea-to-air flux. Results for the 
1985–1989 period, 2014–2018 period, and the difference between periods (Δ) are shown in separate columns. Seasonal 
anomalies of surface pCO2 are calculated relative to an annual mean computed from annual means of temperature, salinity, 
dissolved inorganic carbon, total alkalinity, and nutrients for each year (pCO2 AM, see Equation 4). Different magnitudes in 
the multi-decadal changes for each season (panel c) reflect asymmetries in the pCO2 seasonal cycle change. Ensemble mean 
GOBM changes are shown in green hues (11 models listed in Table 3, excluding OCIM). Ensemble mean pCO2 product 
(Prod.) changes are shown in blue hues (same pCO2 products as in Figure 6). Seasons are defined as JFM and JAS.
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and 2014–2018 climatologies, the pCO2 products show relatively strong positive pCO2 anomalies in winter, and 
relatively strong negative pCO2 anomalies in summer, reflecting the interplay between winter convective mixing 
and warm-season export production in this region where nonthermal pCO2 effects are dominant. In contrast, over 
the same region the anomalies for pCO2 in GOBMs are relatively small in both winter and summer, reflecting 
the near balance between thermal and nonthermal pCO2 cycles. Although it is not explicitly shown here, it is 
important to keep in mind that Figures 2 and 4 revealed that there are discrepancies in the phenology or phasing of 
seasonal variations between the GOBMs and pCO2 products, such that the results with the GOBMs are sensitive 
to the specific definition of the seasonal cycle amplitude with pCO2 products showing indeed the largest seasonal 
change in winter and summer for 45°–60°N, while GOBMs show the largest change in early spring and late 
summer/early autumn (Figures 2 and 4). For the Southern Hemisphere region between 45° and 60°S, the GOBMs 
and pCO2 products are in much better agreement than they are over the Northern Hemisphere subpolar regions 
over both 1985–1989 and 2014–2018, with relatively modest decadal changes for the northern subpolar regions 
where nonthermal pCO2 drivers are larger than thermal pCO2 drivers for the pCO2 products.

The corresponding asymmetries in zonally integrated seasonal CO2 fluxes, shown in Figures 9d–9f, are quite differ-
ent from what was seen for surface pCO2 anomalies. For both time periods 1985–1989 and 2014–2018, seasonal 
CO2 fluxes are larger over the subtropics in winter (ingassing) than in summer (outgassing), which indicates that 
seasonal wind speed asymmetries more than compensate the summer-skewed pCO2 seasonal asymmetry over the 
same latitude range (Fassbender et al., 2022). This is consistent with the winter CO2 fluxes showing local extrema 
for ingassing near 40°N and 40°S where westerly winds exhibit meridional maxima. This feature is also found in 
the 1985–1989 to 2014–2018 decadal change. For the Northern Hemisphere subpolar regions spanning 45°–60°N, 
the seasonal amplification in CO2 fluxes between 1985–1989 and 2014–2018 shows enhanced ingassing during 
summer for the pCO2 products, whereas the GOBMs show enhanced winter uptake over these latitudes. For the 
circumpolar regions of the Southern Hemisphere spanning 45°–60°S, both the GOBMs and the pCO2 products 
broadly exhibit enhanced ingassing in summer (JFM) and winter (JAS) seasons relative to the 1985–1989 period.

We next turn our attention in Figure 10 to deconvolve the role of Cant invasion and climate perturbations (e.g., 
changes to the ocean physical or biogeochemical state caused by anthropogenic climate change) in driving 
multi-decadal changes in pCO2 seasonality between 1985–1989 and 2014–2018. The changes in the subtropics 
are qualitatively similar in the pCO2 products and GOBMs (top and model rows of Figure 10), with the changes in 
the total seasonal cycle amplitude (Figure 10a) dominated by the Cant invasion impact on the thermal component 
with a small climate-driven increase in the thermal pCO2 component (Figure 10b). However, for the subpolar 
regions of the Northern Hemisphere and the Southern Ocean, the pCO2 products show that the nonthermal 
pCO2 component changes driven by climate perturbations (Figure 10c) are sufficiently large to dominate the 
total response in these regions (Figure 10a), a feature that is not seen (or considerably weaker) for the GOBMs. 
Cant-induced declines in carbonate buffering in the high latitudes also work to slightly amplify the total nonther-
mal pCO2 seasonal cycle changes in both the pCO2 products and GOBMs (red lines in right column).

For the total change in the GOBM pCO2 values (Figure 10d), the impact of climate perturbations is relatively 
minor so that the change in pCO2 seasonality is largely dominated by the invasion flux of Cant. For the thermal 
component of pCO2 changes in the GOBMs, both the subtropical and subpolar latitudes of the Northern Hemi-
sphere indicate dominance of the effect of transient Cant invasion, with the Southern Ocean posing one region 
where this is neutralized by climate perturbations. For the nonthermal component of pCO2 changes in the GOBMs, 
the impact of Cant invasion is relatively minor, so that the changes are dominated by climate perturbations, which 
are also small. In summary, for the GOBMs, increases in the total pCO2 seasonal cycle amplitude are dominated 
by the direct influence of Cant on the thermal pCO2 component seasonal cycle amplitude through the enhanced 
temperature sensitivity associated with elevated ocean pCO2 values.

3.3. Estimating Irreducible Uncertainty in Seasonal Cycle Amplitude Changes

We now turn our attention to the emergence of decadal changes in pCO2 seasonality, with applications at the 
gridpoint, zonal mean, and biome scales.

3.3.1. Natural Variability Uncertainty in Detecting Forced Changes in pCO2 Seasonal Amplitude

As was emphasized in the study of Landschützer et al. (2018), natural variability in the seasonal amplitude of 
pCO2 variations can obscure detection of anthropogenic trends, an effect that can be termed natural variability 
uncertainty. For sea surface pCO2, the signal (Figure 11a) and the signal-to-noise ratio (SNR) (Figure 11b) are 
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calculated for a single LE, to illustrate patterns of emergence. We choose here the CESM2 model (Danabasoglu 
et al., 2020) for which the phasing of the pCO2 seasonal cycle over the Northern Hemisphere subpolar biomes 
has the best correspondence with the observation-based products out of the LE simulations described in Table 4 
or the CMIP6 models shown in Table 6.

According to the CESM2-LE, the pCO2 seasonality increases are most emergent (|SNR|>1) (Figure 11b) at the 
grid point level over much of the subtropical Northern Hemisphere, as well as over a band spanning the subtrop-
ical convergence regions of the Southern Hemisphere. Large parts of the North Atlantic subpolar gyre exhibit a 
decrease in the amplitude of seasonal pCO2 variations. This analysis is indicative of pCO2 seasonality changes 
over the Southern Ocean being non-emergent above the noise level of natural variability at the grid point level 
over our three-decade interval. In particular, pCO2 seasonality changes in the Antarctic Circumpolar Current 
region spanning 50°–60°S are non-emergent, along with some parts of the Southern Hemisphere subtropics.

We next consider the emergence characteristics for the underlying thermal and nonthermal drivers of pCO2 season-
ality as represented by the CESM2-LE. We see that the forced decadal change (ensemble mean) for the thermal 
component (Figure 11c) and nonthermal component (Figure 11e) are both considerably larger than the decadal 
change for the full pCO2 field itself (Figure 11a). For the resultant signal-to-noise ratio, we see that the  patterns 
for the thermal component (Figure 11d) and the nonthermal component (Figure 11f) are spatially offset from each 
other, and when considered together help to account for the relatively restricted regions over which there is local grid 
point emergence, predominantly over the thermally dominated subtropical domain, for the pCO2 seasonal cycle. 
From these analyses, we can see that within the subtropics, the emergent regions for total pCO2 SNR (|SNR|>1 
in Figure 11a) correspond to the regions where the ensemble mean nonthermal component (Figure 11e) is small.

3.3.2. Interpretation of Results of Attribution Analysis

Having visualized the patterns of emergence for pCO2 seasonality changes in Figure 11 we redirect out attention to 
the last row of Figure 10 (panels 10g–10i), where the same set of 50 large ensemble members with the CESM2-LE 

Figure 10. Mean change in the seasonal cycle amplitude (winter-minus-summer) of pCO2 and its thermal (T) and nonthermal 
(NT) components from the period 1985–1989 to the period 2014–2018. Changes are broken down into the total change and 
the portion of the change attributed to the accumulation of anthropogenic carbon (Cant) versus climate (Clim: changes to the 
ocean physical or biogeochemical state caused by anthropogenic climate change). The top, middle, and bottom rows show 
the ensemble mean results for the three pCO2 products, the eleven GOBMs listed in Table 3, and the CESM2 large ensemble, 
respectively. Shading reflects the standard deviation across the pCO2 products, GOBMs, and ensemble members. Seasons are 
defined as JFM and JAS.
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are applied to interpret the zonal mean changes in the pCO2 products (first row of Figure 10). The shading for the 
LE results represents natural variability uncertainty (one standard deviation about the 50-ensemble-member mean), 
while the shading for the pCO2 products (Figures 10a–10c) can be interpreted to represent mapping uncertainty. These 
forms of uncertainty are distinct but can be used together to assess the degree to which the Cant and climate-driven 
signals for the pCO2 products are detectable. We consider the means of the pCO2 products in Figures 10a–10c to 
be “best estimates” of the decadal changes. Superimposing the envelope of natural variability from the LE analysis 
(Figures 10g–10i) onto the pCO2 product means would suggest that the Cant and climate driven signals are emergent 
when they and their associated natural variability are separated from zero for their decadal change.

Under this framework, we interpret the Cant component of the pCO2 product changes to be detectable for all 
regions and pCO2 components (pCO2, pCO2 T, and pCO2 NT). What is more surprising and compelling with 
the pCO2 products is the fact that the climate-driven changes over the northern subpolar domains, with much 
of this signal found in the nonthermal component, cannot be explained by natural variability according to the 
CESM2-LE results. Further attribution of this climate-driven signal (whether it reflects processes related to 
mixing or biology) is beyond the scope of this study, but at the very least this underscores the importance of 

Figure 11. Multi-decadal changes in pCO2 seasonality between 1985–1989 and 2014–2018 (left column) and signal-to-noise 
ratio (SNR) maps for pCO2 seasonality changes between 1985–1989 and 2014–2018 (right column). For each case, the 
seasonal amplitude is defined as the absolute value of the difference between JFM and JAS averages of pCO2 in the model, 
such that negative values indicate decreasing amplitude. (a) the full decadal change in pCO2 seasonal amplitude, (b) the SNR 
for the full pCO2 signal, (c) the change in the thermal component of pCO2 seasonal amplitude, (d) the SNR for the thermal 
component change, (e) the change in the nonthermal component, and (f) the SNR for the nonthermal component. All fields 
are from the CESM2 large ensemble (50 members). For each ensemble member, the change in the amplitude of the annual 
cycle was measured by (i) detrending the 1985–2018 time series by subtracting a quadratic polynomial fit, (ii) calculating 
the annual cycle strength as the absolute value of the JFM-JAS difference in pCO2 for each year, (iii) averaging the five 
yearly values for each period, and (iv) subtracting the average over the earlier period from the average over the later period. 
For the full pCO2 seasonal cycle, (i) the signal is defined as the ensemble mean change, and (ii) the noise as the ensemble 
standard deviation, and (iii) the SNR indicates the confidence levels for emergence. This is done analogously for the thermal 
component of seasonality changes for (iv) the signal, (v) the noise, and (vi) the confidence intervals for emergence. Likewise 
for the nonthermal component, (vii) the signal, (viii) the noise, and (ix) the confidence intervals for emergence. Absolute 
magnitudes are chosen to emphasize the strength of the signal, so that the thermal and nonthermal fields in the left column 
do not necessarily sum to the total pCO2 signal. The decomposition of the thermal and nonthermal components of the pCO2 
seasonal cycle is described in Section 2.6.2.



Global Biogeochemical Cycles

RODGERS ET AL.

10.1029/2023GB007798

24 of 34

sustained seasonally resolving observations in high latitude regions to better 
constrain and understand such behavior.

Taken together, the attribution analysis in Figure 10 and the analyses of pCO2 
and CO2 flux seasonal asymmetries in Figure 9 indicate that, over the broad 
areal extent of the subtropics, the pCO2 seasonal amplitude increases with 
an asymmetric larger increase in summer are in large part due to the Cant 
impact on the thermal driver of seasonal amplitude. Through the effect of 
stronger wind speeds in winter than summer, the seasonal CO2 flux asymme-
try becomes even larger and of opposite sign over the subtropics, with large 
increases in winter ingassing. Over the broad expanse of the subtropics, the 
agreement between the pCO2 products and GOBMs, together with the clear 
emergence indicated by the LE, gives us reasonable confidence for both the 
driver (Cant) and the asymmetry of pCO2 seasonality changes and elevated 
winter CO2 uptake. However, for the high northern latitudes, pCO2 products 
and GOBMs disagree on the drivers of the changing pCO2 seasonality. Here, 
the observation-based products indicate that a rather large climate forcing is 
responsible for pCO2 seasonal cycle changes.

3.3.3. Emergence of Forced Trends With Biome Aggregation

We next address the degree to which biome aggregation improves the emer-
gence of pCO2 seasonality trends between 1985–1989 and 2014–2018. To 

this aim, we use multiple LE simulations with five different ESMs (detailed in Table  4) and apply them to 
interpret the decadal changes in pCO2 seasonal variations represented by the pCO2 products. However, before 
considering multi-decadal trends we consider first in Figure 12a an analysis for the six aggregated biomes of the 
simulated seasonal amplitude of pCO2 variations for a climatology over 2014–2018, both for pCO2 products and 
LEs, with uncertainty ranges indicated for each case. For the observation-based pCO2 products, the uncertainty 
shown represents the uncertainty across the nine pCO2 products themselves, which is reflecting the spread across 
methods (mapping uncertainty) in representing gridded pCO2. For an individual LE, the uncertainty represents 
the range of natural variability represented by the collection of individual ensemble members for that specific LE. 
We see that for all six aggregated biomes, at most two of the five LEs have a climatological seasonal amplitude 
(defined as the absolute value of JFM-JAS) where the first quartile range (25%–75%, solid bar) overlaps with the 
first-to-third quartile range of the pCO2 products. Over four of the six biomes (NP-SPSS, NH-STPS, SH-STPS, 
and SH-SS) CESM2-LE overlaps with the pCO2 products, thereby indicating correspondence. We also see that 
inter-model differences in seasonal amplitude (ensemble median) are much larger than the ensemble spread 
(natural variability) for the individual ESMs. Overall, the analysis in Figure 12a indicates that the representation 
of the climatological seasonal amplitude of pCO2 in LEs is partly inconsistent with the pCO2 products, mirroring 
what was found for GOBMs in the first part of the Results section of this study.

On the other hand, the decadal changes in the amplitude of seasonal pCO2 variations between 1985–1989 and 
2014–2018 (Figure  12b) reveal a much better agreement (relative to Figure  12a) between the median of the 
observational products and the ensemble spread of the individual LEs. Most importantly, with one exception over 
the three subtropical biomes (NH-STSS, NH-STPS, SH-STPS) and for each LE within these regions, the range 
of outcomes for modeled pCO2 seasonality changes (the range indicated by the whiskers) does not intersect with 
a zero trend or go negative. Thus in the subtropics the biome-aggregated changes in the seasonal amplitude of 
pCO2 are predominantly emergent, with SH-SS also being largely emergent. For the NP-SPSS biome, the median 
decadal change calculated for each LE indicates an increase in pCO2 seasonal amplitude, although one of the LEs 
is not emergent while two other LEs are near the one standard deviation threshold for emergence. This is indica-
tive of the NP-SPSS being moderately emergent under aggregation.

For the NA-SPSS biome the decadal changes in pCO2 seasonal amplitude are quite distinct from the other regions, 
in that all LEs are at least moderately emergent, but that they have divergent signs in their simulated decadal 
changes. Three of the LEs (CESM1, CESM2, and ESM2M) exhibit a decrease in pCO2 seasonal amplitude, 
while two of the LEs (CanESM2 and CanESM5) exhibit an increase. Under the caveat that we have imposed a 
somewhat restrictive definition of the seasonal cycle that is optimally suited for the pCO2 products (see Figures 2 
and 4), the at least moderately emergent decrease in pCO2 seasonal amplitude for three LEs is distinctive for 

Model name ESM references Data references

ACCESS-ESM1-5 Law et al. (2017) Ziehn et al. (2019)

CanESM5 Swart et al. (2019b) Swart et al. (2019a)

CESM2 Lauritzen et al. (2018) Danabasoglu (2019)

CMCC-ESM2 Lovato et al. (2022) Lovato et al. (2021)

CNRM-ESM2-1 Séférian et al. (2019) Séférian (2018)

GFDL-ESM4 Dunne et al. (2020) Krasting et al. (2018)

IPSL-CM6A-LR Boucher et al. (2020) Boucher et al. (2018)

MIROC-ES2L Hajima et al. (2020) Hajima et al. (2019)

MRI-ESM2-0 Yukimoto et al. (2019b) Yukimoto et al. (2019a)

NorESM2-MM Seland et al. (2020) Bentsen et al. (2019)

UKESM-0-LL Sellar et al. (2019) Tang et al. (2019)

Table 6 
CMIP6 Models Evaluated Against pCO2 Products in Figure 13



Global Biogeochemical Cycles

RODGERS ET AL.

10.1029/2023GB007798

25 of 34

the NA-SPSS biomes. The study of Goris et al. (2023) suggests that such behavior may be expected from the 
disparate responses of the Atlantic Meridional Overturning Circulation (AMOC) for the LEs. However, further 
exploration of this point should be conducted while taking into consideration the sensitivity of the models to the 
definition of the seasonal cycle. It is interesting that one of the pCO2 products does show zero net change between 
1985–1989 and 2014–2018.

The fact that the distribution of multi-decadal trends for individual LEs overlaps with the 25%–75% (bar) range 
for the observation-based pCO2 products gives us a degree of confidence that the biome-aggregated changes can 

Figure 12. Box plots of the absolute amplitude of the sea surface pCO2 seasonal cycle for the period 2014–2018 (left) and 
the change in the amplitude of the pCO2 seasonal cycle between 1985–1989 and 2014–2018 (right) based on pCO2 products 
(blue) and five large ensemble experiments. For the large ensemble experiments, the number of ensemble members used 
for each model is shown in parentheses in the legend. The seasonal cycle amplitude is calculated as the absolute value of 
biome-averaged winter-minus-summer differences (JFM-JAS and JAS-JFM for the Northern and Southern Hemisphere, 
respectively). The boxes show the values between the first quartile (25%) and the third quartile (75%) with a line at the 
median (50%), with the whiskers indicating the minimum and maximum values. Note that for the pCO2 products, the 
uncertainty range reflects uncertainty between the available nine observational pCO2 products, whereas the uncertainty 
range for the large ensemble simulations indicates natural climate variability as simulated by each model. For each ensemble 
member and data product, the change of the amplitude of the seasonal cycle for each region was measured by (i) detrending 
the 1985–2018 time series by subtracting a quadratic polynomial fit, (ii) calculating the seasonal cycle amplitude as the 
winter-minus-summer pCO2 values for each year, (iii) averaging the five yearly values for each period, (iv) subtracting 
the earlier period average from the latter, and (v) calculating the spatial mean with latitude weighting. The amplitude of 
the seasonal cycle in 1985–1989 was obtained in step (iii). For each biome the sequencing of the colors is identical to the 
sequencing in the legend.
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be considered emergent or detectable over this 30-year period. It should be noted, however, that the Northern 
Hemisphere biomes tend to be faced with a triple-whammy of elevated uncertainty, given the relatively high 
degree of disaccord between pCO2 products (mapping uncertainty), the relatively elevated level of natural vari-
ability uncertainty, and the offset of the medians of the different LEs (model structural uncertainty). The LEs 
nevertheless bring great value to the parsing of uncertainty in that they allow us to distinguish between inter-
nal variability uncertainty and model structural uncertainty. Qualitatively they are of similar amplitude for the 
decadal changes (Figure 12b), but the model structural uncertainty is much larger for the 2014–2018 climatology 
(Figure 12a).

The Southern Ocean (SH-SS) region is characterized by relatively weak trends (Figure 12b), yet due to its relatively 
weak natural variability is also predominantly emergent at the biome scale despite being non-emergent at the grid-
point scale (Figure 11b). The reason for there being both weak natural variability and a weak decadal  trend over the 
Southern Ocean is due to the combined effects of the tendency of models to have a relatively weak dominance of 
thermal over nonthermal seasonality drivers over the Southern Ocean, and that the amplitude of seasonal SST vari-
ability over the Southern Ocean is relatively weak. Taken together, this limited the leverage typically afforded to the 
invasion flux of Cant to boost pCO2 seasonality amplitude between the 1980s and 2010s over the Southern Ocean.

4. Discussion
The unprecedented collection of pCO2 products and model simulations available through the RECCAP2 
project has provided an opportunity for not only synthesizing but also understanding the changing seasonal 
cycle in sea surface pCO2. The use of new observation-based pCO2/TA products that include DIC and TA in 
addition to pCO2 has made it possible to address the following scientific questions: (a) what are the underlying 
causes of discrepancies in pCO2 seasonal variability between GOBMs and observation-based products? (b) 
what are the drivers of decadal-timescales trends toward increasing pCO2 seasonality?, and (c) are there asym-
metries in the growth of pCO2 and CO2 flux seasonal variations over multi-decadal timescales that could give 
rise to a feedback mechanism consistent with the mechanism identified in the modeling study of Fassbender 
et al. (2022)?

One of the main findings of this study is that there are systematic discrepancies in the climatological seasonal 
amplitude of surface DIC variations between GOBMs and observation-based pCO2/TA products over very large 
spatial scales (Figure 5c) that are primarily responsible for compromising the climatological seasonal cycle of 
pCO2. More specifically, simulated DIC seasonal variability is systematically smaller for GOBMs than for DIC 
seasonal variability in the pCO2/TA products. The climatological seasonal amplitude of DIC variations can be 
impacted by both the seasonal amplitude of net biological removal of DIC from the surface layer and the seasonal 
process of entrainment associated with destratification. Although it is beyond the scope of this study to parse 
these processes, important information can be inferred from previous studies. Models have previously been 
shown to prematurely exhaust limiting nutrients in summer (Goris et al., 2018), and such behavior could impact 
the seasonal amplitude of surface DIC variations.

From the biome-averaged time series shown in Figure 4, we have seen that there are some important discrepan-
cies in phasing of the climatological seasonal cycle for pCO2 between GOBMs and pCO2 products over biome 
scales. We have opted here to focus largely on a definition of seasonal cycle amplitude as the difference between 
winter and summer, defined as JFM-JAS (JAS-JFM) for the Northern (Southern) Hemisphere, as this was deemed 
to capture the main characteristics of pCO2 seasonality over large scales, based on the pCO2 products, as shown 
in the Hovmöller diagrams in Figure 2. Although our main story of seasonality changes in pCO2 is not strongly 
sensitive to this definition for the pCO2 products or the GOBMs (Figure 3), the presence of phasing differences 
between pCO2 products and GOBMs in high latitudes influences the seasonal amplitude calculated according to 
this definition. We recommend further investigation of such phasing differences to better understand the under-
lying reasons for this discrepancy.

We emphasized earlier that for our purposes of a synthesis, the GOBMs potentially offer an important advantage 
over coupled ESMs for our seasonality study and associated attribution analysis. This is due to the fact that the 
SSTs of the GOBMs are constrained to correspond closely to observations through the imposition of a negative 
feedback in surface heat fluxes by virtue of using observed surface air temperatures (Large & Yeager, 2009). 
However, there is no analogous data-constraint applied for the DIC seasonal evolution, other than an indirect 
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and much weaker effective restoring of sea surface pCO2 to atmospheric pCO2 over a 1-year timescale (an order 
of magnitude less than for SST). As the SSTs of the GOBMs effectively track the observed seasonal cycle with 
fidelity, our attention in this study was drawn to the dominant role of DIC seasonality discrepancies in distorting 
pCO2 seasonality for the GOBMs relative to the observation-based products.

Nevertheless, as a complementary exercise to the evaluation of GOBMs in Figure 4, we consider here an analo-
gous analysis of a collection of the 11 CMIP6 ESMs listed in Table 6. The ESMs are evaluated for their clima-
tological seasonal cycle in pCO2, SST, and DIC, as well as for decadal changes in pCO2. For this case, we have 
considered changes between 1985–1989 and 2010–2014 (an interval 4 years shorter than in Figure  4) to be 
consistent with the fact that the historical period in CMIP6 ends in 2014. In general terms there is no fundamental 
difference between both classes of models. Despite the absence of observational constraints, the simulated SST 
seasonal cycle in ESMs is in good agreement with observations (dotted lines in central column of Figure 13), 
although the model spread is significantly larger as expected. The DIC seasonality of the ESMs is very similar to 
that of the GOBMs (weaker in models than in observation-based pCO2 products) and the overall pCO2 changes 
are very consistent between fully coupled ESMs and GOBMs (right column of Figures 4 and 13). This serves 
to further underscore our main finding that there is a pervasive discrepancy between ocean carbon cycle models 
and pCO2 products, not limited to the RECCAP2 GOBMs, with a seasonal variability in models that is too weak 
relative to pCO2 products. Interpretation of projected future seasonal changes in ESMs should therefore take 
into account the systematic model uncertainties highlighted in this study. As we have seen in Figure 12, a future 
extension of this analysis for coupled models could benefit from the inclusion of LEs, which offer a means to 
deconvolve for models the effects of structural uncertainty from natural variability uncertainty.

Our attribution analysis indicates that in the subtropics the GOBMs and pCO2 products are qualitatively consist-
ent in both the degree of seasonal asymmetry in decadal pCO2 changes and CO2 flux changes (Figure 9), as well 
as for the mechanistic drivers (Figure 10). This reflects the fact that both the GOBMs and pCO2 products are 
dominated by the thermal pCO2 component in the subtropics, albeit with the degree of dominance of the thermal 
pCO2 component being exaggerated by the GOBMs. The fact that the Northern Hemisphere subtropics have a 
larger response than the Southern Hemisphere subtropics is expected given that the seasonal cycle in SST is larger 
in the north than in the south, and thereby the thermal component of seasonality is larger in the north than in the 
south. Thus, Cant invasion will thereby preferentially boost the amplitude of pCO2 seasonality in the subtropics 
of the Northern Hemisphere relative to the Southern Hemisphere, due to the higher amplitude SST variability to 
the north.

An important implication of our attribution analysis is that the decadal changes in seasonal pCO2 and CO2 flux 
amplitudes are qualitatively consistent with the existence of a negative climate feedback over the historical period 
spanning 1985–2018. Consistent with what was found by Fassbender et al. (2022) using future projections with 
an LE simulation, the seasonal asymmetry in CO2 fluxes identified here for the historical period is by inference 
in large part due to seasonal asymmetries in wind speeds and thereby piston velocities, rather than asymmetries 
in pCO2 itself. It is our hope that the analysis provided here will motivate future work to quantify the strength of 
this feedback over the historical period, as doing so is beyond the scope of this study.

Two studies that evaluated the early generation of prognostic ocean biogeochemistry models for their representa-
tion of pCO2 seasonality against observations were McKinley et al. (2006) for the case of the North Pacific and 
Tjiputra et al. (2012) for the case of the North Atlantic. Although an explicit comparison of the models applied 
by McKinley et al. (2006) and Tjiputra et al. (2012) with the RECCAP2 GOBMs is beyond the scope of this 
study, it is important to ask, “how far have we come?”. The message from this study is that important discrep-
ancies in pCO2 seasonality between models and observation-based products persist approximately two decades 
into the era of prognostic biogeochemical models. The new suite of pCO2/TA products that provide time-varying 
surface DIC products constitute invaluable tools for identifying and attributing potential model biases over global 
scales. Moving forward, we recommend that efforts be devoted to understanding how complexity in physical and 
biogeochemical process representation in models is reflected in pCO2 seasonality. For the case of the biogeo-
chemical components of models, one opportunity would be to evaluate with the same circulation state a climatol-
ogy of pCO2 seasonality using different complexity of biogeochemical models, analogous to what was explored 
by Galbraith et al.  (2015) with the BLING and TOPAZ biogeochemical models, or by Karakus et al.  (2022). 
Moreover, it could be beneficial to link the simulated strength of key circulation metrics (e.g., Atlantic Merid-
ional Overturning Circulation for the North Atlantic) to the pCO2 seasonality of the GOBMs. In a study with 
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several coupled climate models, Goris et al. (2023) were able to show that the representation of a model's pCO2 
seasonality in the North Atlantic is strongly linked to the simulated strength of the Gulf Stream volume trans-
port. In order to address the question of how missing physical processes may impact biogeochemistry and pCO2 
seasonality, it would be beneficial to explore independently the impact of mesoscale turbulence with ocean eddies 
(Lévy et al., 1998) and shear-induced turbulence associated with near-inertial oscillations, ocean swells, and wind 
stirring (Jochum et al., 2013; Keerthi et al., 2021; Rodgers et al., 2014) through perturbation studies with indi-
vidual models. Such efforts would be beneficial in identifying the processes that contribute to the discrepancies 
identified in this RECCAP2 synthesis effort.

Figure 13. Same as Figure 4 but with CMIP6 models as listed in Table 6. Note that the climatologies for pCO2 (left column) and both DIC and SST (middle column) 
are taken over the years 2010–2014 (last 5 years of the CMIP6 historical simulations) and that the change in pCO2 seasonality (right column) is calculated as the 
difference between 2010–2014 and 1985–1989.
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5. Conclusions
In this study, we have presented as a contribution to the RECCAP2 effort a synthesis of how the seasonal cycle in 
sea surface pCO2 and air-sea CO2 fluxes has changed over the last three decades (1985–2018). Our main findings 
include:

For a 2014–2018 climatology, we identified a systematic discrepancy in the seasonal amplitude of surface DIC 
variations between the GOBMs, which are too weak, and the surface pCO2/TA (DIC) products, such that the 
pCO2 seasonal cycle in subtropical biomes is spuriously large, and both the amplitude and phase of seasonal 
pCO2 variations are spuriously modulated in subpolar and Southern Ocean biomes. Similar biases are found in 
ESMs as submitted to CMIP6. When averaged over aggregated biomes, both pCO2 products and GOBMs repre-
sent consistent increases in the seasonal amplitude of pCO2 and CO2 fluxes between 1985–1989 and 2014–2018.

Decadal increases in pCO2 seasonal amplitude in subtropical biomes are shown to be dominated process-wise by 
the invasion flux of anthropogenic carbon (Cant) for both the pCO2 products and GOBMs. For pCO2 seasonality 
changes over subpolar and circumpolar biomes, GOBMs see this change as being dominated by Cant invasion, 
but for pCO2 products it is dominated rather by modulations of the climate state, which can be associated with 
changes in SST seasonality or in perturbations occurring in mixing or biological processes. Our analysis of 
LE simulations indicates that the climate-driven signal found in the subpolar biomes of the Northern Hemi-
sphere (bold blue line in Figure 10a) is likely too large to be explained by natural variability, as estimated from 
the amplitude of natural variability in the LE (width of blue shading in Figure 10g). Considered together, the 
subtropical biomes exhibit decadal increases in CO2 flux seasonality that are larger during winter than summer, 
consistent with the mechanism identified by Fassbender et al. (2022) whereby increased seasonal cycles may be 
promoting a negative feedback in the climate system.

We have also identified and quantified two distinct sources of uncertainty that can impact the detection of anthro-
pogenic trends in pCO2 seasonal amplitude. The first type is mapping uncertainty (Figures 3a and 3c), which is 
in essence a reducible form of uncertainty. The second type is natural variability uncertainty (Figures 11 and 12), 
which we identified with the LE simulations, with this being an irreducible form of uncertainty. For both cases, 
we identified that there are large regions of the global domain where the forced anthropogenic signal does not 
rise above the one standard deviation (noise) level at the gridpoint scale. Even for the idealized case of a perfectly 
resolving observational system where mapping error disappears, one would still need to quantify the degree of 
confidence one has that a local measured decadal change represents forced changes in the presence of natural 
variability. We tend in the subtropics to find unanimous agreement at the gridpoint scale across pCO2 products 
and GOBMs on the dominant mechanism of enhanced pCO2 seasonality, namely the Cant-driven boost to the 
thermally component of pCO2 seasonality.

Thus our synthesis provides evidence that the seasonal pCO2 amplitude has significantly increased globally, 
and for many regions, this increase has already emerged from the noise with biome aggregation. This high-
lights the importance of including seasonal changes when considering long-term acidification trends, as we 
will likely cross critical thresholds in some seasons, before such thresholds are crossed in the annual mean 
(Burger et al., 2020, 2022; Henson et al., 2017; Kwiatkowski & Orr, 2018; McNeil & Sasse, 2016). For similar 
reasons, we recommend that modeling resources be devoted to identifying missing processes and implementing 
representations or parameterizations of the pertinent missing processes in ocean biogeochemical models.

Our conclusions rest on the growing availability of pCO2 products that include associated time-varying DIC and 
TA products, with this representing a significant advance for scientific inquiry into the mechanisms controlling 
the ocean uptake of anthropogenic carbon. The fact that the three pCO2/TA products (considered here as surface 
DIC products) that exist to date (JMAMLR, OceanSODA-ETHZ, and CMEMS-LSCE-FFNN) indicate consistent 
patterns of seasonal variability over large scales, which are also consistent with depth-resolving three-dimensional 
monthly DIC climatologies (MOBO-DIC and NNGv2LDEO) over large scales, should boost community confi-
dence in the scientific utility of these products. We therefore strongly recommend to the pCO2 product providers 
to provide DIC and TA along with sea surface pCO2 and air-sea CO2 fluxes. In parallel, we recommend a rigorous 
skill-assessment of the mapping methods that transform from SOCAT measurements to globally gridded pCO2 
products, for example, by using LEs with ESMs as a synthetic testbed similar to the work presented by Gloege 
et al. (2021).
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